論文の概要: Face-GCN: A Graph Convolutional Network for 3D Dynamic Face
Identification/Recognition
- arxiv url: http://arxiv.org/abs/2104.09145v2
- Date: Tue, 20 Apr 2021 08:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 11:36:39.239304
- Title: Face-GCN: A Graph Convolutional Network for 3D Dynamic Face
Identification/Recognition
- Title(参考訳): Face-GCN:3次元動的顔識別/認識のためのグラフ畳み込みネットワーク
- Authors: Konstantinos Papadopoulos, Anis Kacem, Abdelrahman Shabayek, Djamila
Aouada
- Abstract要約: 顔のキーポイントに基づく動的3次元顔認識のための新しいフレームワークを提案する。
表情の動的列は時間グラフとして表現され、3次元の顔のランドマークを用いて構築される。
我々は,動的3次元表情データセットに対するアプローチを評価する。
- 参考スコア(独自算出の注目度): 21.116748155592752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face identification/recognition has significantly advanced over the past
years. However, most of the proposed approaches rely on static RGB frames and
on neutral facial expressions. This has two disadvantages. First, important
facial shape cues are ignored. Second, facial deformations due to expressions
can have an impact on the performance of such a method. In this paper, we
propose a novel framework for dynamic 3D face identification/recognition based
on facial keypoints. Each dynamic sequence of facial expressions is represented
as a spatio-temporal graph, which is constructed using 3D facial landmarks.
Each graph node contains local shape and texture features that are extracted
from its neighborhood. For the classification/identification of faces, a
Spatio-temporal Graph Convolutional Network (ST-GCN) is used. Finally, we
evaluate our approach on a challenging dynamic 3D facial expression dataset.
- Abstract(参考訳): 顔認識/認識はここ数年で大きく進歩している。
しかし、提案手法のほとんどは静的なRGBフレームと中立な表情に依存している。
これには2つの欠点がある。
第一に、重要な顔形状の手がかりは無視される。
第二に、表情による顔の変形は、そのような方法の性能に影響を及ぼす可能性がある。
本稿では,顔のキーポイントに基づく動的3次元顔認識のためのフレームワークを提案する。
各動的表情列は時空間グラフとして表現され、3d顔ランドマークを用いて構築される。
各グラフノードは、その近傍から抽出された局所的な形状とテクスチャを含む。
顔の分類・識別には時空間グラフ畳み込みネットワーク(ST-GCN)を用いる。
最後に,動的3次元表情データセットに対するアプローチについて検討した。
関連論文リスト
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - A Generative Framework for Self-Supervised Facial Representation Learning [18.094262972295702]
自己教師付き表現学習は、ペア化されたデータセットに頼ることなく、強力な一般化能力に注目されるようになった。
自己監督型顔表現学習は、顔のアイデンティティ、表情、ポーズや光といった外部要因の結合により未解決のままである。
自己教師型顔表現のための新しい生成フレームワークであるLatentFaceを提案する。
論文 参考訳(メタデータ) (2023-09-15T09:34:05Z) - Generating 2D and 3D Master Faces for Dictionary Attacks with a
Network-Assisted Latent Space Evolution [68.8204255655161]
マスターフェイス(英: master face)とは、人口の比率の高い顔認証をパスする顔画像である。
2次元および3次元の顔認証モデルに対して,これらの顔の最適化を行う。
3Dでは,2次元スタイルGAN2ジェネレータを用いて顔を生成し,深部3次元顔再構成ネットワークを用いて3次元構造を予測する。
論文 参考訳(メタデータ) (2022-11-25T09:15:38Z) - FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer
Using Neural Generative Adversarial Networks [0.7043489166804575]
顔の識別と表情を分離して符号化する新しい3次元顔モデル表現であるFaceTuneGANを提案する。
本稿では,2次元領域で使用されている画像と画像の変換ネットワークを3次元顔形状に適応させる手法を提案する。
論文 参考訳(メタデータ) (2021-12-01T14:42:03Z) - FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face
Reconstruction [29.920622006999732]
大規模な3次元顔データセット、FaceScape、およびそれに対応するベンチマークを提示し、単視点顔の3次元再構成を評価する。
FaceScapeデータをトレーニングすることにより、単一の画像入力から精巧な3次元顔モデルを予測する新しいアルゴリズムを提案する。
また、FaceScapeデータを用いて、最新の単一視点顔再構成手法の評価を行う。
論文 参考訳(メタデータ) (2021-11-01T16:48:34Z) - Topologically Consistent Multi-View Face Inference Using Volumetric
Sampling [25.001398662643986]
ToFuは、幾何推論フレームワークで、アイデンティティと式をまたいだトポロジ的に一貫したメッシュを生成することができる。
新たなプログレッシブメッシュ生成ネットワークは、顔のトポロジ的構造を特徴量に埋め込む。
これらの高品質な資産は、アバターの作成、アニメーション、物理的にベースとしたスキンレンダリングのためのプロダクションスタジオで容易に利用することができる。
論文 参考訳(メタデータ) (2021-10-06T17:55:08Z) - Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo
Collection [65.92058628082322]
非パラメトリックフェースモデリングは形状仮定なしで画像からのみ3次元フェースを再構成することを目的としている。
本稿では,教師なしのロバストな3次元顔モデリングのための学習・アグリゲート・パーソナライズ・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T03:10:17Z) - Image-to-Video Generation via 3D Facial Dynamics [78.01476554323179]
静止画像から様々な映像を生成するために多目的モデルであるFaceAnimeを提案する。
私たちのモデルは、顔ビデオや顔ビデオの予測など、さまざまなAR/VRやエンターテイメントアプリケーションに汎用的です。
論文 参考訳(メタデータ) (2021-05-31T02:30:11Z) - Disentangled Face Identity Representations for joint 3D Face Recognition
and Expression Neutralisation [20.854071758664297]
提案手法は,3次元顔が与えられた場合,不整合性表現を抽出するだけでなく,その同一性を予測しながら中性表現を伴う現実的な3次元顔を生成する。
提案するネットワークは,(1)3次元顔から潜在表現を符号化するグラフ畳み込みオートエンコーダ(gca),(2)潜在表現を中性顔の表現に変換する生成逆ネットワーク(gan)、(3)3次元顔認識のための中性潜在表現を利用した識別サブネットワークの3つの構成要素から構成されている。
論文 参考訳(メタデータ) (2021-04-20T22:33:10Z) - FaceDet3D: Facial Expressions with 3D Geometric Detail Prediction [62.5557724039217]
表情は3d顔形状の様々な高レベルな詳細を誘導する。
人間の顔のモルフォラブルモデル(3DMM)は、PCAベースの表現でそのような細かい詳細をキャプチャできません。
faceet3dは,1つの画像から,任意の対象表現と一致する幾何学的顔詳細を生成する,初歩的な手法である。
論文 参考訳(メタデータ) (2020-12-14T23:07:38Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
シャープな顔構造を把握した3次元顔先行情報を明示的に組み込んだ新しい顔超解像法を提案する。
我々の研究は、顔属性のパラメトリック記述の融合に基づく3次元形態的知識を初めて探求したものである。
提案した3D先行画像は、最先端技術よりも優れた顔超解像結果が得られる。
論文 参考訳(メタデータ) (2020-07-18T15:26:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。