A Mathematical Analysis of Learning Loss for Active Learning in
Regression
- URL: http://arxiv.org/abs/2104.09315v1
- Date: Mon, 19 Apr 2021 13:54:20 GMT
- Title: A Mathematical Analysis of Learning Loss for Active Learning in
Regression
- Authors: Megh Shukla, Shuaib Ahmed
- Abstract summary: This paper develops a foundation for Learning Loss which enables us to propose a novel modification we call LearningLoss++.
We show that gradients are crucial in interpreting how Learning Loss works, with rigorous analysis and comparison of the gradients between Learning Loss and LearningLoss++.
We also propose a convolutional architecture that combines features at different scales to predict the loss.
We show that LearningLoss++ outperforms in identifying scenarios where the model is likely to perform poorly, which on model refinement translates into reliable performance in the open world.
- Score: 2.792030485253753
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Active learning continues to remain significant in the industry since it is
data efficient. Not only is it cost effective on a constrained budget,
continuous refinement of the model allows for early detection and resolution of
failure scenarios during the model development stage. Identifying and fixing
failures with the model is crucial as industrial applications demand that the
underlying model performs accurately in all foreseeable use cases. One popular
state-of-the-art technique that specializes in continuously refining the model
via failure identification is Learning Loss. Although simple and elegant, this
approach is empirically motivated. Our paper develops a foundation for Learning
Loss which enables us to propose a novel modification we call LearningLoss++.
We show that gradients are crucial in interpreting how Learning Loss works,
with rigorous analysis and comparison of the gradients between Learning Loss
and LearningLoss++. We also propose a convolutional architecture that combines
features at different scales to predict the loss. We validate LearningLoss++
for regression on the task of human pose estimation (using MPII and LSP
datasets), as done in Learning Loss. We show that LearningLoss++ outperforms in
identifying scenarios where the model is likely to perform poorly, which on
model refinement translates into reliable performance in the open world.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Towards Causal Deep Learning for Vulnerability Detection [31.59558109518435]
We introduce do calculus based causal learning to software engineering models.
Our results show that CausalVul consistently improved the model accuracy, robustness and OOD performance.
arXiv Detail & Related papers (2023-10-12T00:51:06Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Online Loss Function Learning [13.744076477599707]
Loss function learning aims to automate the task of designing a loss function for a machine learning model.
We propose a new loss function learning technique for adaptively updating the loss function online after each update to the base model parameters.
arXiv Detail & Related papers (2023-01-30T19:22:46Z) - Dissecting Continual Learning a Structural and Data Analysis [0.0]
Continual Learning is a field dedicated to devise algorithms able to achieve lifelong learning.
Deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions.
When we expose such systems to this incremental setting, performance drop very quickly.
arXiv Detail & Related papers (2023-01-03T10:37:11Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
offline reinforcement learning seeks to utilize offline/historical data to optimize sequential decision-making strategies.
We study the statistical limits of offline reinforcement learning with linear model representations.
arXiv Detail & Related papers (2022-03-11T09:00:12Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
We propose a new formalism of knowledge distillation for regression problems.
First, we propose a new loss function, teacher outlier loss rejection, which rejects outliers in training samples using teacher model predictions.
By considering the multi-task network, training of the feature extraction of student models becomes more effective.
arXiv Detail & Related papers (2020-02-28T08:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.