Loss Functions in Deep Learning: A Comprehensive Review
- URL: http://arxiv.org/abs/2504.04242v1
- Date: Sat, 05 Apr 2025 18:07:20 GMT
- Title: Loss Functions in Deep Learning: A Comprehensive Review
- Authors: Omar Elharrouss, Yasir Mahmood, Yassine Bechqito, Mohamed Adel Serhani, Elarbi Badidi, Jamal Riffi, Hamid Tairi,
- Abstract summary: Loss functions are at the heart of deep learning, shaping how models learn and perform across diverse tasks.<n>This paper presents a comprehensive review of loss functions, covering fundamental metrics like Mean Squared Error and Cross-Entropy to advanced functions such as Adversarial and Diffusion losses.
- Score: 3.8001666556614446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Loss functions are at the heart of deep learning, shaping how models learn and perform across diverse tasks. They are used to quantify the difference between predicted outputs and ground truth labels, guiding the optimization process to minimize errors. Selecting the right loss function is critical, as it directly impacts model convergence, generalization, and overall performance across various applications, from computer vision to time series forecasting. This paper presents a comprehensive review of loss functions, covering fundamental metrics like Mean Squared Error and Cross-Entropy to advanced functions such as Adversarial and Diffusion losses. We explore their mathematical foundations, impact on model training, and strategic selection for various applications, including computer vision (Discriminative and generative), tabular data prediction, and time series forecasting. For each of these categories, we discuss the most used loss functions in the recent advancements of deep learning techniques. Also, this review explore the historical evolution, computational efficiency, and ongoing challenges in loss function design, underlining the need for more adaptive and robust solutions. Emphasis is placed on complex scenarios involving multi-modal data, class imbalances, and real-world constraints. Finally, we identify key future directions, advocating for loss functions that enhance interpretability, scalability, and generalization, leading to more effective and resilient deep learning models.
Related papers
- A Versatile Influence Function for Data Attribution with Non-Decomposable Loss [3.1615846013409925]
We propose a Versatile Influence Function (VIF) that can be straightforwardly applied to machine learning models trained with any non-decomposable loss.
VIF represents a significant advancement in data attribution, enabling efficient influence-function-based attribution across a wide range of machine learning paradigms.
arXiv Detail & Related papers (2024-12-02T09:59:01Z) - Fast and Efficient Local Search for Genetic Programming Based Loss
Function Learning [12.581217671500887]
We propose a new meta-learning framework for task and model-agnostic loss function learning via a hybrid search approach.
Results show that the learned loss functions bring improved convergence, sample efficiency, and inference performance on tabulated, computer vision, and natural language processing problems.
arXiv Detail & Related papers (2024-03-01T02:20:04Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - Deep Manifold Learning for Reading Comprehension and Logical Reasoning
Tasks with Polytuplet Loss [0.0]
The current trend in developing machine learning models for reading comprehension and logical reasoning tasks is focused on improving the models' abilities to understand and utilize logical rules.
This work focuses on providing a novel loss function and accompanying model architecture that has more interpretable components than some other models.
Our strategy involves emphasizing relative accuracy over absolute accuracy and can theoretically produce the correct answer with incomplete knowledge.
arXiv Detail & Related papers (2023-04-03T14:48:34Z) - Online Loss Function Learning [13.744076477599707]
Loss function learning aims to automate the task of designing a loss function for a machine learning model.
We propose a new loss function learning technique for adaptively updating the loss function online after each update to the base model parameters.
arXiv Detail & Related papers (2023-01-30T19:22:46Z) - A survey and taxonomy of loss functions in machine learning [51.35995529962554]
We present a comprehensive overview of the most widely used loss functions across key applications, including regression, classification, generative modeling, ranking, and energy-based modeling.
We introduce 43 distinct loss functions, structured within an intuitive taxonomy that clarifies their theoretical foundations, properties, and optimal application contexts.
arXiv Detail & Related papers (2023-01-13T14:38:24Z) - Xtreme Margin: A Tunable Loss Function for Binary Classification
Problems [0.0]
We provide an overview of a novel loss function, the Xtreme Margin loss function.
Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process.
arXiv Detail & Related papers (2022-10-31T22:39:32Z) - Loss Function Discovery for Object Detection via Convergence-Simulation
Driven Search [101.73248560009124]
We propose an effective convergence-simulation driven evolutionary search algorithm, CSE-Autoloss, for speeding up the search progress.
We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses.
Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors.
arXiv Detail & Related papers (2021-02-09T08:34:52Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.