Sequential Deconfounding for Causal Inference with Unobserved
Confounders
- URL: http://arxiv.org/abs/2104.09323v1
- Date: Fri, 16 Apr 2021 09:56:39 GMT
- Title: Sequential Deconfounding for Causal Inference with Unobserved
Confounders
- Authors: Tobias Hatt, Stefan Feuerriegel
- Abstract summary: We develop the Sequential Deconfounder, a method that enables estimating individualized treatment effects over time.
This is the first deconfounding method that can be used in a general sequential setting.
We prove that using our method yields unbiased estimates of individualized treatment responses over time.
- Score: 18.586616164230566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using observational data to estimate the effect of a treatment is a powerful
tool for decision-making when randomized experiments are infeasible or costly.
However, observational data often yields biased estimates of treatment effects,
since treatment assignment can be confounded by unobserved variables. A remedy
is offered by deconfounding methods that adjust for such unobserved
confounders. In this paper, we develop the Sequential Deconfounder, a method
that enables estimating individualized treatment effects over time in presence
of unobserved confounders. This is the first deconfounding method that can be
used in a general sequential setting (i.e., with one or more treatments
assigned at each timestep). The Sequential Deconfounder uses a novel Gaussian
process latent variable model to infer substitutes for the unobserved
confounders, which are then used in conjunction with an outcome model to
estimate treatment effects over time. We prove that using our method yields
unbiased estimates of individualized treatment responses over time. Using
simulated and real medical data, we demonstrate the efficacy of our method in
deconfounding the estimation of treatment responses over time.
Related papers
- Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning [0.0]
We propose a difference-in-differences (DiD) method for continuous treatment and multiple time periods.
Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses.
arXiv Detail & Related papers (2024-10-28T15:10:43Z) - Counterfactual Generative Models for Time-Varying Treatments [15.208067770012283]
Estimating the counterfactual outcome of treatment is essential for decision-making in public health and clinical science.
We propose a novel conditional generative framework capable of producing counterfactual samples under time-varying treatment.
We present a thorough evaluation of our method using both synthetic and real-world data.
arXiv Detail & Related papers (2023-05-25T05:45:53Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.