論文の概要: A Joint Energy and Latency Framework for Transfer Learning over 5G
Industrial Edge Networks
- arxiv url: http://arxiv.org/abs/2104.09382v1
- Date: Mon, 19 Apr 2021 15:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 13:29:35.613763
- Title: A Joint Energy and Latency Framework for Transfer Learning over 5G
Industrial Edge Networks
- Title(参考訳): 5G産業エッジネットワーク上での移動学習のための合同エネルギー・レイテンシフレームワーク
- Authors: Bo Yang, Omobayode Fagbohungbe, Xuelin Cao, Chau Yuen, Lijun Qian,
Dusit Niyato, and Yan Zhang
- Abstract要約: 5G産業エッジネットワークのための転送学習対応エッジCNNフレームワークを提案する。
特に、エッジサーバは、既存の画像データセットを使用してcnnを事前トレーニングすることができる。
TLの助けを借りて、トレーニングに参加していないデバイスは、訓練されたエッジCNNモデルをスクラッチからトレーニングせずに微調整するだけです。
- 参考スコア(独自算出の注目度): 53.26338041079138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a transfer learning (TL)-enabled edge-CNN framework
for 5G industrial edge networks with privacy-preserving characteristic. In
particular, the edge server can use the existing image dataset to train the CNN
in advance, which is further fine-tuned based on the limited datasets uploaded
from the devices. With the aid of TL, the devices that are not participating in
the training only need to fine-tune the trained edge-CNN model without training
from scratch. Due to the energy budget of the devices and the limited
communication bandwidth, a joint energy and latency problem is formulated,
which is solved by decomposing the original problem into an uploading decision
subproblem and a wireless bandwidth allocation subproblem. Experiments using
ImageNet demonstrate that the proposed TL-enabled edge-CNN framework can
achieve almost 85% prediction accuracy of the baseline by uploading only about
1% model parameters, for a compression ratio of 32 of the autoencoder.
- Abstract(参考訳): 本稿では,プライバシー保護特性を有する5G産業エッジネットワークのための転送学習(TL)対応エッジCNNフレームワークを提案する。
特に、エッジサーバは、既存の画像データセットを使用してcnnを事前トレーニングすることができ、デバイスからアップロードされた限られたデータセットに基づいてさらに微調整される。
TLの助けを借りて、トレーニングに参加していないデバイスは、訓練されたエッジCNNモデルをスクラッチからトレーニングせずに微調整するだけです。
デバイスのエネルギー予算と限られた通信帯域幅のため、結合エネルギーと遅延問題を定式化し、元の問題をアップロード決定サブプロブレムと無線帯域割り当てサブプロブレムに分解して解決する。
imagenetを用いた実験により、tl対応エッジcnnフレームワークは、オートエンコーダの32の圧縮比で、約1%のモデルパラメータをアップロードすることで、ベースラインの約85%の予測精度を達成できることが示されている。
関連論文リスト
- SpikeBottleNet: Spike-Driven Feature Compression Architecture for Edge-Cloud Co-Inference [0.86325068644655]
エッジクラウドコ推論システムのための新しいアーキテクチャであるSpikeBottleNetを提案する。
SpikeBottleNetはスパイクニューロンモデルを統合し、エッジデバイスのエネルギー消費を大幅に削減する。
論文 参考訳(メタデータ) (2024-10-11T09:59:21Z) - Growing Efficient Accurate and Robust Neural Networks on the Edge [0.9208007322096533]
現在のソリューションは、Edgeにデプロイする前にモデルをトレーニングし、圧縮するためにCloudに依存しています。
これにより、ローカルに取得したフィールドデータをクラウドに送信する上で、高エネルギとレイテンシのコストが発生すると同時に、プライバシの懸念も高まる。
We propose GEARnn to grow and training robust network completely on the Edge device。
論文 参考訳(メタデータ) (2024-10-10T08:01:42Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning(FL)は、サーバがプライベートデータセットにアクセスすることなく、複数のデバイスによって更新されたモデルを集約する、プライバシ保護の分散学習フレームワークである。
本稿では,無線ネットワークにおけるHFLのモデルプルーニングを導入し,ニューラルネットワークの規模を小さくする。
提案するHFLは,モデルプルーニングを伴わないHFLと比較して学習精度が良く,通信コストが約50%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-15T22:04:49Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
本稿では,デバイスエッジ共振器におけるCNN推論の計算負荷について検討する。
エンドデバイスにおける効率的な特徴抽出のための新しいオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
実験の結果、AECNNは中間データを約4%の精度で256倍圧縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-24T18:10:01Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
エッジデバイスは、安価なハードウェアと限られた冷却と計算資源のために、限られた処理能力を提供する。
我々はエッジデバイスのためのEffCNetと呼ばれる新しいディープ畳み込みニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-28T21:32:31Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - perf4sight: A toolflow to model CNN training performance on Edge GPUs [16.61258138725983]
この研究は、CNNのトレーニングメモリフットプリントとレイテンシを予測する正確なモデルを開発するための自動化手法であるperf4sightを提案する。
フレームワークはPyTorch、ターゲットデバイスはNVIDIA Jetson TX2、それぞれ95%と91%の精度でトレーニングメモリフットプリントとレイテンシを予測する。
論文 参考訳(メタデータ) (2021-08-12T07:55:37Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks [8.291242737118482]
我々はディープニューラルネットワーク(DNN)を用いた遠隔物体検出支援エッジコンピューティングに焦点をあてる。
無線リンクを介して送信されるデータの量を削減するためのフレームワークを開発する。
提案手法は,パラメータ領域における局所演算とエッジ演算の効果的な中間オプションを示す。
論文 参考訳(メタデータ) (2020-07-31T03:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。