論文の概要: Growing Efficient Accurate and Robust Neural Networks on the Edge
- arxiv url: http://arxiv.org/abs/2410.07691v1
- Date: Thu, 10 Oct 2024 08:01:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:25:43.644593
- Title: Growing Efficient Accurate and Robust Neural Networks on the Edge
- Title(参考訳): エッジ上の効率的な精度とロバストニューラルネットワークの育成
- Authors: Vignesh Sundaresha, Naresh Shanbhag,
- Abstract要約: 現在のソリューションは、Edgeにデプロイする前にモデルをトレーニングし、圧縮するためにCloudに依存しています。
これにより、ローカルに取得したフィールドデータをクラウドに送信する上で、高エネルギとレイテンシのコストが発生すると同時に、プライバシの懸念も高まる。
We propose GEARnn to grow and training robust network completely on the Edge device。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ubiquitous deployment of deep learning systems on resource-constrained Edge devices is hindered by their high computational complexity coupled with their fragility to out-of-distribution (OOD) data, especially to naturally occurring common corruptions. Current solutions rely on the Cloud to train and compress models before deploying to the Edge. This incurs high energy and latency costs in transmitting locally acquired field data to the Cloud while also raising privacy concerns. We propose GEARnn (Growing Efficient, Accurate, and Robust neural networks) to grow and train robust networks in-situ, i.e., completely on the Edge device. Starting with a low-complexity initial backbone network, GEARnn employs One-Shot Growth (OSG) to grow a network satisfying the memory constraints of the Edge device using clean data, and robustifies the network using Efficient Robust Augmentation (ERA) to obtain the final network. We demonstrate results on a NVIDIA Jetson Xavier NX, and analyze the trade-offs between accuracy, robustness, model size, energy consumption, and training time. Our results demonstrate the construction of efficient, accurate, and robust networks entirely on an Edge device.
- Abstract(参考訳): リソース制約のあるエッジデバイスへのディープラーニングシステムのユビキタス展開は、その脆弱さと、アウト・オブ・ディストリビューション(OOD)データ、特に自然に発生する一般的な汚職に結びついた高い計算複雑性によって妨げられている。
現在のソリューションは、Edgeにデプロイする前にモデルをトレーニングし、圧縮するためにCloudに依存しています。
これにより、ローカルに取得したフィールドデータをクラウドに送信する上で、高エネルギとレイテンシのコストが発生すると同時に、プライバシの懸念も高まる。
GEARnn(Growing Efficient, Accurate, Robust Neural Network)を提案する。
低複雑さの初期バックボーンネットワークから始めると、GEARnnはOne-Shot Growth (OSG)を使用して、クリーンデータを使用してエッジデバイスのメモリ制約を満たすネットワークを成長させ、効率的なロバスト拡張(ERA)を使用してネットワークを堅牢化し、最終的なネットワークを得る。
NVIDIA Jetson Xavier NXでの結果を示し、精度、堅牢性、モデルサイズ、エネルギー消費、トレーニング時間の間のトレードオフを分析する。
この結果から,Edgeデバイス上での効率的で正確で堅牢なネットワークの構築が実証された。
関連論文リスト
- SpikeBottleNet: Spike-Driven Feature Compression Architecture for Edge-Cloud Co-Inference [0.86325068644655]
エッジクラウドコ推論システムのための新しいアーキテクチャであるSpikeBottleNetを提案する。
SpikeBottleNetはスパイクニューロンモデルを統合し、エッジデバイスのエネルギー消費を大幅に削減する。
論文 参考訳(メタデータ) (2024-10-11T09:59:21Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
エッジデバイスは、安価なハードウェアと限られた冷却と計算資源のために、限られた処理能力を提供する。
我々はエッジデバイスのためのEffCNetと呼ばれる新しいディープ畳み込みニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-28T21:32:31Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
本稿では,Huawei Cloudのエッジクラウド共同プロトタイプであるAuto-Splitの技法と技術実践について述べる。
私たちの知る限りでは、Deep Neural Network(DNN)分割機能を提供する既存の産業製品はありません。
論文 参考訳(メタデータ) (2021-08-30T08:03:29Z) - perf4sight: A toolflow to model CNN training performance on Edge GPUs [16.61258138725983]
この研究は、CNNのトレーニングメモリフットプリントとレイテンシを予測する正確なモデルを開発するための自動化手法であるperf4sightを提案する。
フレームワークはPyTorch、ターゲットデバイスはNVIDIA Jetson TX2、それぞれ95%と91%の精度でトレーニングメモリフットプリントとレイテンシを予測する。
論文 参考訳(メタデータ) (2021-08-12T07:55:37Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
我々は、エッジデバイスとクラウド間でCNNを実行することは、リソース制約のある最適化問題を解決することと同義であると主張している。
実世界のエッジデバイスでの実験では、LMOSはエッジで異なるCNNモデルの実行可能な実行を保証する。
論文 参考訳(メタデータ) (2021-07-19T19:39:56Z) - A Joint Energy and Latency Framework for Transfer Learning over 5G
Industrial Edge Networks [53.26338041079138]
5G産業エッジネットワークのための転送学習対応エッジCNNフレームワークを提案する。
特に、エッジサーバは、既存の画像データセットを使用してcnnを事前トレーニングすることができる。
TLの助けを借りて、トレーニングに参加していないデバイスは、訓練されたエッジCNNモデルをスクラッチからトレーニングせずに微調整するだけです。
論文 参考訳(メタデータ) (2021-04-19T15:13:16Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Conditionally Deep Hybrid Neural Networks Across Edge and Cloud [6.442928757682793]
本稿では,AIベースのフォグコンピューティングを実現するための条件付きディープハイブリッドニューラルネットワークを提案する。
提案するネットワークは、量子化された層と、エッジの早期出口と、クラウド上の完全精度の層で構成される分散的に展開することができる。
両層がエッジにある場合,提案した条件付きハイブリッドネットワークは,エッジでの推論の65%を処理し,計算エネルギーの5.5倍の削減を実現する。
論文 参考訳(メタデータ) (2020-05-21T18:18:43Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。