A Framework using Contrastive Learning for Classification with Noisy
Labels
- URL: http://arxiv.org/abs/2104.09563v1
- Date: Mon, 19 Apr 2021 18:51:22 GMT
- Title: A Framework using Contrastive Learning for Classification with Noisy
Labels
- Authors: Madalina Ciortan, Romain Dupuis, Thomas Peel
- Abstract summary: We propose a framework using contrastive learning as a pre-training task to perform image classification in the presence of noisy labels.
Recent strategies such as pseudo-labeling, sample selection with Gaussian Mixture models, weighted supervised contrastive learning have been combined into a fine-tuning phase following the pre-training.
- Score: 1.2891210250935146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a framework using contrastive learning as a pre-training task to
perform image classification in the presence of noisy labels. Recent strategies
such as pseudo-labeling, sample selection with Gaussian Mixture models,
weighted supervised contrastive learning have been combined into a fine-tuning
phase following the pre-training. This paper provides an extensive empirical
study showing that a preliminary contrastive learning step brings a significant
gain in performance when using different loss functions: non-robust, robust,
and early-learning regularized. Our experiments performed on standard
benchmarks and real-world datasets demonstrate that: i) the contrastive
pre-training increases the robustness of any loss function to noisy labels and
ii) the additional fine-tuning phase can further improve accuracy but at the
cost of additional complexity.
Related papers
- Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning.
We propose a novel problem setting called Complementary Labels Learning with Augmented Classes (CLLAC)
By using unlabeled data, we propose an unbiased estimator of classification risk for CLLAC, which is guaranteed to be provably consistent.
arXiv Detail & Related papers (2022-11-19T13:55:27Z) - Label Noise-Robust Learning using a Confidence-Based Sieving Strategy [15.997774467236352]
In learning tasks with label noise, improving model robustness against overfitting is a pivotal challenge.
Identifying the samples with noisy labels and preventing the model from learning them is a promising approach to address this challenge.
We propose a novel discriminator metric called confidence error and a sieving strategy called CONFES to differentiate between the clean and noisy samples effectively.
arXiv Detail & Related papers (2022-10-11T10:47:28Z) - Mixing Up Contrastive Learning: Self-Supervised Representation Learning
for Time Series [22.376529167056376]
We propose an unsupervised contrastive learning framework motivated from the perspective of label smoothing.
The proposed approach uses a novel contrastive loss that naturally exploits a data augmentation scheme.
Experiments demonstrate the framework's superior performance compared to other representation learning approaches.
arXiv Detail & Related papers (2022-03-17T11:49:21Z) - Contrastive Regularization for Semi-Supervised Learning [46.020125061295886]
We propose contrastive regularization to improve both efficiency and accuracy of the consistency regularization by well-clustered features of unlabeled data.
Our method also shows robust performance on open-set semi-supervised learning where unlabeled data includes out-of-distribution samples.
arXiv Detail & Related papers (2022-01-17T07:20:11Z) - Consistency Regularization Can Improve Robustness to Label Noise [4.340338299803562]
This paper empirically studies the relevance of consistency regularization for training-time robustness to noisy labels.
We show that a simple loss function that encourages consistency improves the robustness of the models to label noise.
arXiv Detail & Related papers (2021-10-04T08:15:08Z) - Meta Transition Adaptation for Robust Deep Learning with Noisy Labels [61.8970957519509]
This study proposes a new meta-transition-learning strategy for the task.
Specifically, through the sound guidance of a small set of meta data with clean labels, the noise transition matrix and the classifier parameters can be mutually ameliorated.
Our method can more accurately extract the transition matrix, naturally following its more robust performance than prior arts.
arXiv Detail & Related papers (2020-06-10T07:27:25Z) - Learning Not to Learn in the Presence of Noisy Labels [104.7655376309784]
We show that a new class of loss functions called the gambler's loss provides strong robustness to label noise across various levels of corruption.
We show that training with this loss function encourages the model to "abstain" from learning on the data points with noisy labels.
arXiv Detail & Related papers (2020-02-16T09:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.