Exceptional Point and Cross-Relaxation Effect in a Hybrid Quantum System
- URL: http://arxiv.org/abs/2104.09811v1
- Date: Tue, 20 Apr 2021 07:55:00 GMT
- Title: Exceptional Point and Cross-Relaxation Effect in a Hybrid Quantum System
- Authors: Guo-Qiang Zhang, Zhen Chen, Da Xu, Nathan Shammah, Meiyong Liao,
Tie-Fu Li, Limin Tong, Shi-Yao Zhu, Franco Nori, and J. Q. You
- Abstract summary: Exceptional points (EPs) are exotic degeneracies of non-Hermitian systems.
We report an experimental observation of the EP in a hybrid quantum system consisting of dense nitrogen (P1) centers in diamond coupled to a coplanar-waveguide resonator.
- Score: 10.893480720749444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exceptional points (EPs) are exotic degeneracies of non-Hermitian systems,
where the eigenvalues and the corresponding eigenvectors simultaneously
coalesce in parameter space, and these degeneracies are sensitive to tiny
perturbations on the system. Here we report an experimental observation of the
EP in a hybrid quantum system consisting of dense nitrogen (P1) centers in
diamond coupled to a coplanar-waveguide resonator. These P1 centers can be
divided into three subensembles of spins, and cross relaxation occurs among
them. As a new method to demonstrate this EP, we pump a given spin subensemble
with a drive field to tune the magnon-photon coupling in a wide range. We
observe the EP in the middle spin subensemble coupled to the resonator mode,
irrespective of which spin subensemble is actually driven. This robustness of
the EP against pumping reveals the key role of the cross relaxation in P1
centers. It offers a novel way to convincingly prove the existence of the
cross-relaxation effect via the EP.
Related papers
- Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - An Explicit Wavefunction of the Interacting Non-Hermitian Spin-1/2 1D System [9.980836334866664]
We present an explicit Bethe-ansatz wavefunction to a 1D spin-$frac12$ interacting fermion system.
We show a resonance resulting from the interplay between interaction and non-Hermitian spin-orbit coupling.
arXiv Detail & Related papers (2024-09-06T08:28:58Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) have been extensively studied in relation to superconducting circuits.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We identify dynamical observables affected by these transitions and demonstrate how the underlying topology can be recovered from experimentally measured quantum jump distributions.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Self-Ordered Supersolid in Spinor Condensates with Cavity-Mediated Spin-Momentum-Mixing Interactions [0.0]
We propose an experimental scheme to create self-ordered supersolid in spin-$1/2$ condensates confined within an optical cavity.
The interplay of cavity and pump fields gives rise to supersolid square and plane wave phases, comprehensively described by the two-component Tavis-Cummings model.
We show that the self-ordered supersolid phase exhibits an undamped gapless Goldstone mode over a wide parameter range.
arXiv Detail & Related papers (2024-04-17T08:10:45Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Heisenberg-limited spin squeezing in a hybrid system with
Silicon-Vacancy centers [0.0]
We investigate spin squeezing in a hybrid quantum system consisting of a Silicon-Vacancy (SiV) center ensemble and a diamond acoustic waveguide.
By modulating these fields, the one-axis twist (OAT) interaction and two-axis two-spin (TATS) interaction can be independently realized.
In the latter case the squeezing parameter scales to spin number as $xi_R2sim1.61N-0.64$ with the consideration of dissipation, which is very close to the Heisenberg limit.
arXiv Detail & Related papers (2023-08-10T04:58:33Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot [19.029069649697824]
Hole spins confined in semiconductor quantum dot systems have gained considerable interest for their strong spin-orbit interactions (SOIs)
Here we experimentally demonstrate a tunable SOI in a double quantum dot in a Germanium (Ge) hut wire (HW)
This tunability of the SOI could pave the way toward the realization of high-fidelity qubits in Ge HW systems.
arXiv Detail & Related papers (2022-06-08T02:44:31Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Coherent single-spin electron resonance spectroscopy manifested at an
exceptional-point singularity in a doped polyacetylene [1.8986796884429729]
Spin-dependent charge transfer decay in an alkali atom doped polyacetylene is studied in terms of the complex spectral analysis.
Nonhermitian effective Hamiltonian has been derived from the total system hermitian Hamiltonian.
arXiv Detail & Related papers (2020-12-29T08:30:25Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.