Oscillatory dissipative tunneling in an asymmetric double-well potential
- URL: http://arxiv.org/abs/2409.13113v1
- Date: Thu, 19 Sep 2024 22:43:07 GMT
- Title: Oscillatory dissipative tunneling in an asymmetric double-well potential
- Authors: Alejandro Cros Carrillo de Albornoz, Rodrigo G. Cortiñas, Max Schäfer, Nicholas E. Frattini, Brandon Allen, Delmar G. A. Cabral, Pablo E. Videla, Pouya Khazaei, Eitan Geva, Victor S. Batista, Michel H. Devoret,
- Abstract summary: Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
- Score: 32.65699367892846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dissipative tunneling remains a cornerstone effect in quantum mechanics. In chemistry, it plays a crucial role in governing the rates of chemical reactions, often modeled as the motion along the reaction coordinate from one potential well to another. The relative positions of energy levels in these wells strongly influences the reaction dynamics. Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates. In this paper, we show that a continuously driven Kerr parametric oscillator with a third order non-linearity can be operated in the quantum regime to create a fully tunable asymmetric double-well. Our experiment leverages a low-noise, all-microwave control system with a high-efficiency readout of the which-well information. We explore the reaction rates across the landscape of tunneling resonances in parameter space. We uncover two new and counter-intuitive effects: (i) a weak asymmetry can significantly decrease the activation rates, even though the well in which the system is initialized is made shallower, and (ii) the width of the tunneling resonances alternates between narrow and broad lines as a function of the well depth and asymmetry. We predict by numerical simulations that both effects will also manifest themselves in ordinary chemical double-well systems in the quantum regime. Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
Related papers
- Experimental observation of parity-symmetry-protected phenomena in the quantum Rabi model with a trapped ion [13.368172641201571]
We experimentally simulate a highly controllable extended quantum Rabi model tuning into the ultra-strong or deep coupling regime.
We find sensitive responses for the two-level system entropy and phonon Wigner function in the deep coupling regime.
This work offers the prospect of exploring symmetry-controlled quantum phenomena and their applications in high-precision quantum technologies.
arXiv Detail & Related papers (2025-01-10T12:23:43Z) - Unraveling the switching dynamics in a quantum double-well potential [0.0]
We study the spontaneous switching of a quantum particle between the wells of a double-well potential.
The switching rate exhibits a step-like decrease termed the "staircase"
In addition, we show that in the regime of a few states in the well and under moderate to low temperatures, highly excited states are populated predominantly via cascaded and direct thermal heating.
arXiv Detail & Related papers (2024-12-31T01:12:22Z) - Cotunneling assisted nonequilibrium thermodynamics of a photosynthetic junction [1.0889037375410424]
We theoretically investigate a photosystem II-based reaction center modeled as a nonequilibrium quantum junction.
We focus on the electron-electron interactions that enable cotunneling events to be captured through quantum mechanical rates.
arXiv Detail & Related papers (2024-10-15T10:24:03Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Revealing the Berry phase under the tunneling barrier [0.0]
In quantum mechanics, a quantum wavepacket may acquire a geometrical phase as it evolves.
In condensed matter systems, the Berry phase plays a crucial role in fundamental phenomena.
We observe a complex-valued Berry phase via strong field light matter interactions in condensed matter systems.
arXiv Detail & Related papers (2024-08-06T11:18:04Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Harmonic dual dressing of spin one-half systems [0.0]
Controlled modifications of the quantum magnetic response are produced in dressed systems by a high frequency, strong and not-resonant electromagnetic field.
The secondary field enables a fine tuning of the qubit response, with control parameters amplitude, harmonic content, spatial orientation and phase relation.
arXiv Detail & Related papers (2021-08-18T14:36:10Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.