Oscillatory dissipative tunneling in an asymmetric double-well potential
- URL: http://arxiv.org/abs/2409.13113v1
- Date: Thu, 19 Sep 2024 22:43:07 GMT
- Title: Oscillatory dissipative tunneling in an asymmetric double-well potential
- Authors: Alejandro Cros Carrillo de Albornoz, Rodrigo G. Cortiñas, Max Schäfer, Nicholas E. Frattini, Brandon Allen, Delmar G. A. Cabral, Pablo E. Videla, Pouya Khazaei, Eitan Geva, Victor S. Batista, Michel H. Devoret,
- Abstract summary: Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
- Score: 32.65699367892846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dissipative tunneling remains a cornerstone effect in quantum mechanics. In chemistry, it plays a crucial role in governing the rates of chemical reactions, often modeled as the motion along the reaction coordinate from one potential well to another. The relative positions of energy levels in these wells strongly influences the reaction dynamics. Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates. In this paper, we show that a continuously driven Kerr parametric oscillator with a third order non-linearity can be operated in the quantum regime to create a fully tunable asymmetric double-well. Our experiment leverages a low-noise, all-microwave control system with a high-efficiency readout of the which-well information. We explore the reaction rates across the landscape of tunneling resonances in parameter space. We uncover two new and counter-intuitive effects: (i) a weak asymmetry can significantly decrease the activation rates, even though the well in which the system is initialized is made shallower, and (ii) the width of the tunneling resonances alternates between narrow and broad lines as a function of the well depth and asymmetry. We predict by numerical simulations that both effects will also manifest themselves in ordinary chemical double-well systems in the quantum regime. Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
Related papers
- Cotunneling assisted nonequilibrium thermodynamics of a photosynthetic junction [1.0889037375410424]
We theoretically investigate a photosystem II-based reaction center modeled as a nonequilibrium quantum junction.
We focus on the electron-electron interactions that enable cotunneling events to be captured through quantum mechanical rates.
arXiv Detail & Related papers (2024-10-15T10:24:03Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Engineering One Axis Twisting via a Dissipative Berry Phase Using Strong
Symmetries [0.0]
We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can generate metrologically useful spin-squeezed states.
This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system.
arXiv Detail & Related papers (2024-01-11T19:03:46Z) - Machine Learning Catalysis of Quantum Tunneling [0.07281763676971992]
We show that, by applying Machine Learning techniques when the system is coupled to ancilla, one optimize the parameters of both the ancillary component and the coupling.
We provide illustrative examples for the paradigmatic scenario involving a two-mode system and a two-mode ancilla.
The increase of the tunneling probability is rooted in the decrease of the two-well asymmetry due to the coherent oscillations induced by the coupling to the ancilla.
arXiv Detail & Related papers (2023-10-16T08:10:41Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Harmonic dual dressing of spin one-half systems [0.0]
Controlled modifications of the quantum magnetic response are produced in dressed systems by a high frequency, strong and not-resonant electromagnetic field.
The secondary field enables a fine tuning of the qubit response, with control parameters amplitude, harmonic content, spatial orientation and phase relation.
arXiv Detail & Related papers (2021-08-18T14:36:10Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Feedback Induced Magnetic Phases in Binary Bose-Einstein Condensates [0.0]
We develop a theoretical toolbox for quantum feedback control of Bose-Einstein condensates.
Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful new tool for quantum engineering in cold-atom systems.
arXiv Detail & Related papers (2020-07-14T18:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.