Fine-grained Anomaly Detection via Multi-task Self-Supervision
- URL: http://arxiv.org/abs/2104.09993v1
- Date: Tue, 20 Apr 2021 14:19:08 GMT
- Title: Fine-grained Anomaly Detection via Multi-task Self-Supervision
- Authors: Loic Jezequel, Ngoc-Son Vu, Jean Beaudet, Aymeric Histace
- Abstract summary: Self-supervised learning has greatly helped many methods including anomaly detection.
By combining in a multi-task framework high-scale shape features oriented task with low-scale fine features oriented task, our method greatly improves fine-grained anomaly detection.
It outperforms state-of-the-art with up to 31% relative error reduction measured with AUROC on various anomaly detection problems.
- Score: 2.9237210794416755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting anomalies using deep learning has become a major challenge over the
last years, and is becoming increasingly promising in several fields. The
introduction of self-supervised learning has greatly helped many methods
including anomaly detection where simple geometric transformation recognition
tasks are used. However these methods do not perform well on fine-grained
problems since they lack finer features. By combining in a multi-task framework
high-scale shape features oriented task with low-scale fine features oriented
task, our method greatly improves fine-grained anomaly detection. It
outperforms state-of-the-art with up to 31% relative error reduction measured
with AUROC on various anomaly detection problems.
Related papers
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality.
We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space.
Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types.
arXiv Detail & Related papers (2023-10-01T21:24:05Z) - UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection [6.260747047974035]
We present UniFormaly, a universal and powerful anomaly detection framework.
We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods.
UniFormaly achieves outstanding results on various tasks and datasets.
arXiv Detail & Related papers (2023-07-24T06:04:12Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
We present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection.
To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm.
arXiv Detail & Related papers (2023-06-27T14:10:09Z) - Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks [2.9237210794416755]
We introduce novel discriminative and generative tasks which focus on different visual cues.
We present a new out-of-distribution detection function and highlight its better stability compared to other out-of-distribution detection methods.
Our model can more accurately learn highly discriminative features using these self-supervised tasks.
arXiv Detail & Related papers (2021-11-24T09:54:50Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Double-Adversarial Activation Anomaly Detection: Adversarial
Autoencoders are Anomaly Generators [0.0]
Anomaly detection is a challenging task for machine learning algorithms due to the inherent class imbalance.
Inspired by generative models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called DA3D.
arXiv Detail & Related papers (2021-01-12T18:07:34Z) - Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [113.81927544121625]
Anomaly detection in video is a challenging computer vision problem.
In this paper, we approach anomalous event detection in video through self-supervised and multi-task learning at the object level.
arXiv Detail & Related papers (2020-11-15T10:21:28Z) - ARCADe: A Rapid Continual Anomaly Detector [25.34227775187408]
We address a novel learning problem of continual anomaly detection (CAD)
We propose ARCADe, an approach to train neural networks to be robust against the major challenges of this new learning problem.
The results of our experiments on three datasets show that ARCADe substantially outperforms baselines from the continual learning and anomaly detection literature.
arXiv Detail & Related papers (2020-08-10T11:59:32Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods.
We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges.
arXiv Detail & Related papers (2020-07-06T02:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.