UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection
- URL: http://arxiv.org/abs/2307.12540v2
- Date: Tue, 14 Nov 2023 09:10:14 GMT
- Title: UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection
- Authors: Yujin Lee, Harin Lim, Seoyoon Jang, Hyunsoo Yoon
- Abstract summary: We present UniFormaly, a universal and powerful anomaly detection framework.
We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods.
UniFormaly achieves outstanding results on various tasks and datasets.
- Score: 6.260747047974035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual anomaly detection aims to learn normality from normal images, but
existing approaches are fragmented across various tasks: defect detection,
semantic anomaly detection, multi-class anomaly detection, and anomaly
clustering. This one-task-one-model approach is resource-intensive and incurs
high maintenance costs as the number of tasks increases. We present UniFormaly,
a universal and powerful anomaly detection framework. We emphasize the
necessity of our off-the-shelf approach by pointing out a suboptimal issue in
online encoder-based methods. We introduce Back Patch Masking (BPM) and top
k-ratio feature matching to achieve unified anomaly detection. BPM eliminates
irrelevant background regions using a self-attention map from self-supervised
ViTs. This operates in a task-agnostic manner and alleviates memory storage
consumption, scaling to tasks with large-scale datasets. Top k-ratio feature
matching unifies anomaly levels and tasks by casting anomaly scoring into
multiple instance learning. Finally, UniFormaly achieves outstanding results on
various tasks and datasets. Codes are available at
https://github.com/YoojLee/Uniformaly.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Continuous Memory Representation for Anomaly Detection [24.58611060347548]
CRAD is a novel anomaly detection method for representing normal features within a "continuous" memory.
In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection.
arXiv Detail & Related papers (2024-02-28T12:38:44Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks [2.9237210794416755]
We introduce novel discriminative and generative tasks which focus on different visual cues.
We present a new out-of-distribution detection function and highlight its better stability compared to other out-of-distribution detection methods.
Our model can more accurately learn highly discriminative features using these self-supervised tasks.
arXiv Detail & Related papers (2021-11-24T09:54:50Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network.
To fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection.
We formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval.
arXiv Detail & Related papers (2020-12-25T22:36:22Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.