論文の概要: Efficient Retrieval Optimized Multi-task Learning
- arxiv url: http://arxiv.org/abs/2104.10129v1
- Date: Tue, 20 Apr 2021 17:16:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 13:37:00.242284
- Title: Efficient Retrieval Optimized Multi-task Learning
- Title(参考訳): 効率的検索最適化マルチタスク学習
- Authors: Hengxin Fun, Sunil Gandhi, Sujith Ravi
- Abstract要約: 本稿では,自己指導型タスク,知識検索,抽出質問応答を共同で訓練するための新しい検索最適化マルチタスク(ROM)フレームワークを提案する。
我々のROMアプローチは、複数のタスクに効率的にスケーリングできる統一的で一般化可能なフレームワークを提供する。
当社のフレームワークでは,近年のQAメソッドよりも同等あるいは優れたパフォーマンスを実現していますが,パラメータの数を大幅に削減しています。
- 参考スコア(独自算出の注目度): 16.189136169520424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there have been significant advances in neural methods for tackling
knowledge-intensive tasks such as open domain question answering (QA). These
advances are fueled by combining large pre-trained language models with
learnable retrieval of documents. Majority of these models use separate
encoders for learning query representation, passage representation for the
retriever and an additional encoder for the downstream task. Using separate
encoders for each stage/task occupies a lot of memory and makes it difficult to
scale to a large number of tasks. In this paper, we propose a novel Retrieval
Optimized Multi-task (ROM) framework for jointly training self-supervised
tasks, knowledge retrieval, and extractive question answering. Our ROM approach
presents a unified and generalizable framework that enables scaling efficiently
to multiple tasks, varying levels of supervision, and optimization choices such
as different learning schedules without changing the model architecture. It
also provides the flexibility of changing the encoders without changing the
architecture of the system. Using our framework, we achieve comparable or
better performance than recent methods on QA, while drastically reducing the
number of parameters.
- Abstract(参考訳): 近年、オープンドメイン質問応答(qa)のような知識集約的なタスクに取り組むためのニューラルメソッドが大幅に進歩している。
これらの進歩は、大きな事前訓練された言語モデルと学習可能な文書検索を組み合わせることで促進される。
これらのモデルの多くはクエリ表現の学習、レトリバーのパス表現、下流タスクのための追加エンコーダに分離エンコーダを使用している。
ステージ/タスク毎に別々のエンコーダを使用することで、大量のメモリを占有し、多数のタスクにスケールすることが難しくなる。
本稿では,自己指導型タスク,知識検索,抽出質問応答を共同で訓練するための新しい検索最適化マルチタスク(ROM)フレームワークを提案する。
我々のROMアプローチは、複数のタスクに効率的にスケーリングできる統一的で一般化可能なフレームワークを提供し、モデルのアーキテクチャを変更することなく、異なる学習スケジュールなどの選択を最適化する。
また、システムのアーキテクチャを変更することなくエンコーダを変更する柔軟性も提供する。
当社のフレームワークでは,近年のQAメソッドと比較して,同等あるいは優れたパフォーマンスを実現しています。
関連論文リスト
- Birdie: Advancing State Space Models with Reward-Driven Objectives and Curricula [23.071384759427072]
状態空間モデル(SSM)はトランスフォーマーよりも利点があるが、長期のコンテキスト内検索のようなテキストコピー、連想リコール、質問応答を必要とするタスクに苦労する。
本研究では,SSMのコンテキスト内検索能力を大幅に向上する新たな学習手法であるBirdieを提案する。
論文 参考訳(メタデータ) (2024-11-01T21:01:13Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - Scalarization for Multi-Task and Multi-Domain Learning at Scale [15.545810422759295]
複数の入力ドメインと/または出力タスクで単一のモデルをトレーニングすることで、複数のソースからの情報を統一されたバックボーンに圧縮することができる。
しかし、これらのネットワークの最適化は、異なるタスクやドメイン間の相違による課題である。
論文 参考訳(メタデータ) (2023-10-13T07:31:04Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
本研究では,様々な事前学習タスクをマルチタスク事前学習モデル(MASTER)に統合することを目的とする。
MASTERは共有エンコーダのマルチデコーダアーキテクチャを利用して、タスク全体にわたる豊富なセマンティック情報を高密度ベクトルに圧縮する表現ボトルネックを構築することができる。
論文 参考訳(メタデータ) (2022-12-15T13:57:07Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - XtremeDistilTransformers: Task Transfer for Task-agnostic Distillation [80.18830380517753]
我々は新しいタスク非依存蒸留フレームワーク XtremeDistilTransformers を開発した。
本研究は, 蒸留における複数のソースタスク, 拡張資源, モデルアーキテクチャの伝達可能性について検討する。
論文 参考訳(メタデータ) (2021-06-08T17:49:33Z) - MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale [103.7609761511652]
大規模集団ロボット学習システムが,行動のレパートリーを同時に獲得できることを示す。
新しいタスクは、以前学んだタスクから継続的にインスタンス化できる。
我々は,7台のロボットから収集したデータを用いて,実世界のタスク12組でシステムを訓練し,評価する。
論文 参考訳(メタデータ) (2021-04-16T16:38:02Z) - Multi-task Retrieval for Knowledge-Intensive Tasks [21.725935960568027]
ニューラル検索のためのマルチタスク訓練モデルを提案する。
我々のアプローチは、数ショット設定で過去の手法より優れているだけでなく、ニューラルレトリバーに匹敵する。
レトリバーの助けを借りて、ダウンストリームタスクの既存のモデルを改善し、複数のベンチマークで最先端の技術を密接に一致または改善します。
論文 参考訳(メタデータ) (2021-01-01T00:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。