Polymer-loaded three dimensional microwave cavities for hybrid quantum
systems
- URL: http://arxiv.org/abs/2104.10237v1
- Date: Tue, 20 Apr 2021 20:30:03 GMT
- Title: Polymer-loaded three dimensional microwave cavities for hybrid quantum
systems
- Authors: Myles Ruether, Clinton A. Potts, John P. Davis, and Lindsay J. LeBlanc
- Abstract summary: Microwave cavity resonators are crucial components of many quantum technologies and are a promising platform for hybrid quantum systems.
We study the microwave cavity mode in the presence of three commonly-used machinable polymers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microwave cavity resonators are crucial components of many quantum
technologies and are a promising platform for hybrid quantum systems, as their
open architecture enables the integration of multiple subsystems inside the
cavity volume. To support these subsystems within the cavity, auxiliary
structures are often required, but the effects of these structures on the
microwave cavity mode are difficult to predict due to a lack of a priori
knowledge of the materials' response in the microwave regime. Understanding
these effects becomes even more important when frequency matching is critical
and tuning is limited, for example, when matching microwave modes to atomic
resonances. Here, we study the microwave cavity mode in the presence of three
commonly-used machinable polymers, paying particular attention to the change in
resonance and the dissipation of energy. We demonstrate how to use the derived
dielectric coefficient and loss tangent parameters for cavity design in a test
case, wherein we match a polymer-filled 3D microwave cavity to a hyperfine
transition in rubidium.
Related papers
- Extracting the current-phase-relation of a monolithic three-dimensional
nano-constriction using a DC-current-tunable superconducting microwave cavity [0.0]
We present a niobium microwave cavity with a monolithically integrated, neon-ion-beam patterned 3D nano-constriction.
By design, we obtain a DC-current-tunable microwave circuit and characterize how the bias-current-dependent constriction properties impact the cavity resonance.
Our platform provides a useful method to comprehensively characterize nonlinear elements integrated in microwave circuits.
arXiv Detail & Related papers (2024-02-15T19:02:49Z) - Niobium Quantum Interference Microwave Circuits with Monolithic
Three-Dimensional (3D) Nanobridge Junctions [0.0]
We present the realization of superconducting niobium microwave resonators with integrated, three-dimensional (3D) nanobridge-based superconducting quantum interference devices.
Results reveal great potential for application of these circuits in hybrid systems with e.g. magnons and spin ensembles or in flux-mediated optomechanics.
arXiv Detail & Related papers (2023-05-25T17:31:49Z) - Microwave-optics Entanglement via Cavity Optomagnomechanics [4.24565587746027]
A new mechanism for preparing stationary entanglement between microwave and optical cavity fields is proposed.
The microwave-optics entanglement is robust against thermal noise.
It will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
arXiv Detail & Related papers (2022-08-23T02:58:10Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Microwave multiphoton conversion via coherently driven permanent dipole
systems [68.8204255655161]
We investigate a leaking single-mode quantized cavity field coupled with a resonantly driven two-level system possessing permanent dipoles.
The frequencies of the interacting subsystems are being considered very different, e.g., microwave ranges for the cavity and optical domains for the frequency of the two-level emitter, respectively.
arXiv Detail & Related papers (2020-08-12T16:20:44Z) - Coherent multi-mode conversion from microwave to optical wave via a
magnon-cavity hybrid system [0.49213071634447486]
Multi-mode enabled system is essential for practical applications.
We experimentally demonstrate coherent multi-mode conversion from the microwave to optical wave via collective spin excitation.
It is expected to be valuable for designing a magnon hybrid system that can be used for coherent conversion between microwave and optical photons.
arXiv Detail & Related papers (2020-07-30T08:24:39Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.