論文の概要: Revisiting The Evaluation of Class Activation Mapping for
Explainability: A Novel Metric and Experimental Analysis
- arxiv url: http://arxiv.org/abs/2104.10252v1
- Date: Tue, 20 Apr 2021 21:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:27:35.207679
- Title: Revisiting The Evaluation of Class Activation Mapping for
Explainability: A Novel Metric and Experimental Analysis
- Title(参考訳): 説明可能性のためのクラスアクティベーションマッピングの評価を再考する:新しいメトリクスと実験的分析
- Authors: Samuele Poppi, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
- Abstract要約: クラスアクティベーションマッピング(cam)アプローチは、アクティベーションマップの平均を重み付けすることで、効果的な可視化を提供する。
説明マップを定量化するための新しいメトリクスセットを提案し、より効果的な方法を示し、アプローチ間の比較を簡素化します。
- 参考スコア(独自算出の注目度): 54.94682858474711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the request for deep learning solutions increases, the need for
explainability is even more fundamental. In this setting, particular attention
has been given to visualization techniques, that try to attribute the right
relevance to each input pixel with respect to the output of the network. In
this paper, we focus on Class Activation Mapping (CAM) approaches, which
provide an effective visualization by taking weighted averages of the
activation maps. To enhance the evaluation and the reproducibility of such
approaches, we propose a novel set of metrics to quantify explanation maps,
which show better effectiveness and simplify comparisons between approaches. To
evaluate the appropriateness of the proposal, we compare different CAM-based
visualization methods on the entire ImageNet validation set, fostering proper
comparisons and reproducibility.
- Abstract(参考訳): ディープラーニングソリューションの要求が増加するにつれて、説明可能性の必要性はさらに根本的になる。
この設定では、ネットワークの出力に対して各入力画素に適切な関連性を持たせようとする可視化技術に特に注意が向けられている。
本稿では,活性化マップの重み付き平均値を用いて効果的に可視化する,クラス活性化マッピング(CAM)アプローチに焦点を当てる。
このようなアプローチの評価と再現性を高めるために,説明地図を定量化するための新しいメトリクスセットを提案する。
提案手法の妥当性を評価するため,ImageNetの検証セット全体に対して異なるCAMベースの可視化手法を比較し,適切な比較と再現性を育成する。
関連論文リスト
- Decom--CAM: Tell Me What You See, In Details! Feature-Level Interpretation via Decomposition Class Activation Map [23.71680014689873]
クラスアクティベーションマップ(CAM)は、オブジェクトの位置をハイライトすることで深層モデルの予測を解釈するために広く使われている。
本稿では,分解クラス活性化マップ(Decom-CAM)と呼ばれる2段階の解釈可能性を提案する。
実験の結果,提案したDecom-CAMは最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-27T14:33:01Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z) - Impact of a DCT-driven Loss in Attention-based Knowledge-Distillation
for Scene Recognition [64.29650787243443]
本稿では, アクティベーションマップの2次元周波数変換を転送前に提案し, 解析する。
この戦略は、シーン認識などのタスクにおける知識伝達可能性を高める。
我々は、この論文で使われているトレーニングおよび評価フレームワークを、http://www.vpu.eps.uam.es/publications/DCTBasedKDForSceneRecognitionで公開しています。
論文 参考訳(メタデータ) (2022-05-04T11:05:18Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
プロキシタスクによる一貫性の導入は、データ駆動学習を強化することが示されている。
本稿では,光フロー推定のための新しい,効果的な整合性戦略を提案する。
論文 参考訳(メタデータ) (2022-04-14T22:58:30Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
本稿では,機能マップの各ユニットの関連性を定量化し,活用して視覚的説明を提供する新しい説明可能性手法であるADVISEを紹介する。
我々は、画像分類タスクにおいて、AlexNet、VGG16、ResNet50、XceptionをImageNetで事前訓練した上で、我々のアイデアを広く評価する。
さらに,ADVISEは衛生チェックをパスしながら,感度および実装独立性公理を満たすことを示す。
論文 参考訳(メタデータ) (2022-03-02T18:16:57Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
実例に基づく情報ノイズコントラスト推定訓練に意味クラス正の付加を施すことの利点について検討する。
本稿では,インフォネッションNCEの損失を改善するための,自己指導型協調学習手法を提案する。
本研究では,2つの下流タスク(行動認識とビデオ検索)における学習表現の質を評価する。
論文 参考訳(メタデータ) (2020-10-19T17:59:01Z) - Assessing the Reliability of Visual Explanations of Deep Models with
Adversarial Perturbations [15.067369314723958]
本稿では,深層モデルの説明の信頼性を評価するための客観的尺度を提案する。
提案手法は,入力画像の逆方向の摂動によるネットワーク結果の変化に基づく。
我々はまた,本質的な説明を損なうことなく,より解釈可能な地図を創出し,関連性マップのクリーン化へのアプローチの直接的な適用を提案する。
論文 参考訳(メタデータ) (2020-04-22T19:57:34Z) - Uncertainty based Class Activation Maps for Visual Question Answering [30.859101872119517]
本稿では,視覚的注意マップを提供する勾配に基づく確実性推定手法を提案する。
我々は,これらの推定値の勾配を用いて,より改良した現代確率的ディープラーニング手法を取り入れた。
提案手法は,深層学習モデルの精度向上と説明のためのレシピとみなすことができる。
論文 参考訳(メタデータ) (2020-01-23T19:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。