論文の概要: Gradient Masked Federated Optimization
- arxiv url: http://arxiv.org/abs/2104.10322v1
- Date: Wed, 21 Apr 2021 02:45:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:21:49.166097
- Title: Gradient Masked Federated Optimization
- Title(参考訳): 勾配マスク付きフェデレーション最適化
- Authors: Irene Tenison, Sreya Francis, Irina Rish
- Abstract要約: Federated Averaging (FedAVG)は、その単純さと通信オーバーヘッドが低いため、最も人気のあるフェデレーション学習アルゴリズムになりました。
我々は、FedAVGが参加するクライアント間でオプティマを縫合する傾向にあることを示す。
クライアント全体にマスクされたグラデーションを含めるためのFedAVGアルゴリズムの修正を提案し、それらを使用して追加のサーバモデル更新を行います。
- 参考スコア(独自算出の注目度): 5.858642952428615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Averaging (FedAVG) has become the most popular federated learning
algorithm due to its simplicity and low communication overhead. We use simple
examples to show that FedAVG has the tendency to sew together the optima across
the participating clients. These sewed optima exhibit poor generalization when
used on a new client with new data distribution. Inspired by the invariance
principles in (Arjovsky et al., 2019; Parascandolo et al., 2020), we focus on
learning a model that is locally optimal across the different clients
simultaneously. We propose a modification to FedAVG algorithm to include masked
gradients (AND-mask from (Parascandolo et al., 2020)) across the clients and
uses them to carry out an additional server model update. We show that this
algorithm achieves better accuracy (out-of-distribution) than FedAVG,
especially when the data is non-identically distributed across clients.
- Abstract(参考訳): フェデレート平均化(FedAVG)は,その単純さと通信オーバーヘッドの低さから,最も一般的なフェデレーション学習アルゴリズムとなっている。
簡単な例を使って、FedAVGが参加するクライアント間でオプティマを縫い合わせる傾向を示す。
これらの縫製オプティマは、新しいデータ分布を持つ新しいクライアントで使用すると、あまり一般化しない。
不変原則(Arjovsky et al., 2019; Parascandolo et al., 2020)に触発された私たちは、異なるクライアント間で局所的に最適なモデルを学ぶことに集中しています。
我々は、クライアント間でマスクされた勾配(parascandolo et al., 2020)を含むようにfedavgアルゴリズムを変更し、追加のサーバモデル更新を実行するためにそれらを使用する。
このアルゴリズムはFedAVGよりも精度(アウト・オブ・ディストリビューション)が高いことを示す。
関連論文リスト
- FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the
Power of Heterogeneous Clients [50.13097183691517]
実世界のフェデレーションシナリオでは、様々な計算と通信資源を持つ多種多様なクライアントが存在することが多い。
本稿では,新しいフェデレーションチューニングアルゴリズムであるFedRAを提案する。
各通信ラウンドにおいて、FedRAはランダムにアロケーション行列を生成する。
アダプタを用いてアロケーション行列とファインチューンに基づいて、元のモデルから少数のレイヤを再編成する。
論文 参考訳(メタデータ) (2023-11-19T04:43:16Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - FedAvg with Fine Tuning: Local Updates Lead to Representation Learning [54.65133770989836]
Federated Averaging (FedAvg)アルゴリズムは、クライアントノードでのいくつかのローカルな勾配更新と、サーバでのモデル平均更新の交互化で構成されている。
我々は、FedAvgの出力の一般化の背景には、クライアントのタスク間の共通データ表現を学習する能力があることを示す。
異種データを用いたフェデレーション画像分類におけるFedAvgの表現学習能力を示す実証的証拠も提供する。
論文 参考訳(メタデータ) (2022-05-27T00:55:24Z) - Personalized Federated Learning with Exact Stochastic Gradient Descent [15.666401346622575]
我々は、勾配SGD降下の正確な更新を実現するためのパーソナライズされたベンチマークに対する新しいアプローチを提案する。
本稿では、各最適化ラウンドにおいて、ランダムに選択されたクライアントが、損失関数の最適化に向けてクライアント固有の更新を行う新しいSGD型スキームを提案する。
これにより、クライアントと一般的なパラメータによって実行されるパーソナライズされたパラメータの正確な最小化が可能になる。
論文 参考訳(メタデータ) (2022-02-20T16:11:20Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
フェデレーション学習は、データをデバイス上でプライベートにしながら、複数のクライアントにわたるモデルの分散トレーニングを記述する。
本稿では,サーバがクライアント固有のモデルパラメータに対して事前分布のパラメータを提供する階層的潜在変数モデルとして,サーバが設定したフェデレーション学習プロセスについて考察する。
我々は,単純なガウス先行とよく知られた期待最大化(EM)アルゴリズムのハードバージョンを用いて,そのようなモデルの学習は,フェデレーション学習環境における最も一般的なアルゴリズムであるFedAvgに対応することを示す。
論文 参考訳(メタデータ) (2021-11-19T12:58:59Z) - Distributed Non-Convex Optimization with Sublinear Speedup under
Intermittent Client Availability [46.85205907718874]
フェデレーション学習は新しい機械学習フレームワークで、多くのクライアントがトレーニングデータを共有することなく、協力的にモデルをトレーニングする。
本研究では,間欠的なモバイル環境におけるフェデレーション学習の実践と課題について考察する。
我々はFedLaAvg(略してFedLaAvg)と呼ばれる単純な分散非線形最適化アルゴリズムを提案する。
我々の理論的解析は、FedLaAvgが$(E1/2/(NT1/2)$の収束率に達し、クライアントの総数に対してサブ線形速度を達成することを示している。
論文 参考訳(メタデータ) (2020-02-18T06:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。