論文の概要: Automatic Double Machine Learning for Continuous Treatment Effects
- arxiv url: http://arxiv.org/abs/2104.10334v1
- Date: Wed, 21 Apr 2021 03:17:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:15:39.835520
- Title: Automatic Double Machine Learning for Continuous Treatment Effects
- Title(参考訳): 連続処理効果のための自動ダブル機械学習
- Authors: Sylvia Klosin
- Abstract要約: 連続処理効果の新しい非パラメトリック推定器について, 正常性を導入し, 証明する。
我々は、治療レベルの特定のレベルで関心のある結果の期待値 - 平均用量応答関数を推定します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce and prove asymptotic normality for a new
nonparametric estimator of continuous treatment effects. Specifically, we
estimate the average dose-response function - the expected value of an outcome
of interest at a particular level of the treatment level. We utilize tools from
both the double debiased machine learning (DML) and the automatic double
machine learning (ADML) literatures to construct our estimator. Our estimator
utilizes a novel debiasing method that leads to nice theoretical stability and
balancing properties. In simulations our estimator performs well compared to
current methods.
- Abstract(参考訳): 本稿では, 持続的治療効果の非パラメトリック推定器について, 漸近正規性を導入し, 証明する。
具体的には、治療レベルの特定のレベルにおける利子結果の期待値である平均線量-反応関数を推定する。
本研究では,DML(Double Debiased Machine Learning)とADML(Automatic Double Machine Learning)の2つの文献のツールを用いて,推定器を構築した。
我々の推定器は、理論的な安定性とバランス性をもたらす新しいデバイアス法を利用する。
シミュレーションでは、推定器は現在の手法と比較してよく機能する。
関連論文リスト
- Semiparametric inference for impulse response functions using double/debiased machine learning [49.1574468325115]
本稿では,インパルス応答関数(IRF)に対する機械学習推定手法を提案する。
提案した推定器は、処理と結果変数の完全な非パラメトリック関係に依存することができ、柔軟な機械学習アプローチを用いてIRFを推定することができる。
論文 参考訳(メタデータ) (2024-11-15T07:42:02Z) - Automatic doubly robust inference for linear functionals via calibrated debiased machine learning [0.9694940903078658]
本稿では2つの頑健な推論のためのバイアス付き機械学習推定器を提案する。
C-DML推定器は、結果回帰または線形汎函数のリース表現器が十分に推定されたときに線形性を維持する。
我々の理論的および実証的な結果は、ニュアンス関数の不一致または遅い推定によるバイアスを軽減するためにC-DMLの使用を支持する。
論文 参考訳(メタデータ) (2024-11-05T03:32:30Z) - Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration [0.0]
ダブル/デバイアスド機械学習(DML)は、ニュアンス関数の予測に依存するダブルロススコア関数を使用する。
ダブルロバストスコア関数に依存する推定器は、確率スコア予測における誤差に非常に敏感である。
本稿では,DMLフレームワーク内での確率校正手法について検討する。
論文 参考訳(メタデータ) (2024-09-07T17:44:01Z) - Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
ランダム化実験における分散処理効果パラメータを推定するための新しい回帰調整法を提案する。
提案手法では,事前処理による協調処理を分散回帰フレームワークに組み込み,機械学習技術を用いて分散処理効果推定器の精度を向上させる。
論文 参考訳(メタデータ) (2024-07-22T20:28:29Z) - Improving Bias Correction Standards by Quantifying its Effects on Treatment Outcomes [54.18828236350544]
Propensity score matching (PSM) は、分析のために同等の人口を選択することで選択バイアスに対処する。
異なるマッチング手法は、すべての検証基準を満たす場合でも、同じタスクに対する平均処理効果(ATE)を著しく異なるものにすることができる。
この問題に対処するため,新しい指標A2Aを導入し,有効試合数を削減した。
論文 参考訳(メタデータ) (2024-07-20T12:42:24Z) - Calibrating doubly-robust estimators with unbalanced treatment assignment [0.0]
本稿では、確率スコアモデリングのためのデータをアンサンプするDML推定器の簡単な拡張を提案する。
本論文は, 推定器が推定器の特性を保ち, 校正値が元の分布に一致することを示す理論的結果を提供する。
論文 参考訳(メタデータ) (2024-03-03T18:40:11Z) - A Semiparametric Instrumented Difference-in-Differences Approach to
Policy Learning [2.1989182578668243]
本稿では,最適な治療方針を学習するための汎用機器差分差分法(DiD)アプローチを提案する。
具体的には、並列傾向仮定が成立しない場合、二進楽器変数(IV)を用いて識別結果を確立する。
また、ウォルド推定器、新しい逆確率推定器、半効率的で乗算的な頑健な推定器のクラスを構築する。
論文 参考訳(メタデータ) (2023-10-14T09:38:32Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。