論文の概要: Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration
- arxiv url: http://arxiv.org/abs/2409.04874v1
- Date: Sat, 7 Sep 2024 17:44:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:20:37.042633
- Title: Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration
- Title(参考訳): Propensity Score Calibrationによるダブル/デバイアス機械学習の有限サンプル性能の向上
- Authors: Daniele Ballinari, Nora Bearth,
- Abstract要約: ダブル/デバイアスド機械学習(DML)は、ニュアンス関数の予測に依存するダブルロススコア関数を使用する。
ダブルロバストスコア関数に依存する推定器は、確率スコア予測における誤差に非常に敏感である。
本稿では,DMLフレームワーク内での確率校正手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Machine learning techniques are widely used for estimating causal effects. Double/debiased machine learning (DML) (Chernozhukov et al., 2018) uses a double-robust score function that relies on the prediction of nuisance functions, such as the propensity score, which is the probability of treatment assignment conditional on covariates. Estimators relying on double-robust score functions are highly sensitive to errors in propensity score predictions. Machine learners increase the severity of this problem as they tend to over- or underestimate these probabilities. Several calibration approaches have been proposed to improve probabilistic forecasts of machine learners. This paper investigates the use of probability calibration approaches within the DML framework. Simulation results demonstrate that calibrating propensity scores may significantly reduces the root mean squared error of DML estimates of the average treatment effect in finite samples. We showcase it in an empirical example and provide conditions under which calibration does not alter the asymptotic properties of the DML estimator.
- Abstract(参考訳): 機械学習技術は因果効果を推定するために広く用いられている。
DML (Double/debiased Machine Learning) (Chernozhukov et al , 2018) は、共変量に対する処理代入条件の確率である確率スコアのようなニュアンス関数の予測に依存する二重確率スコア関数を使用する。
ダブルロバストスコア関数に依存する推定器は、確率スコア予測における誤差に非常に敏感である。
機械学習者は、これらの確率を過度にまたは過小評価する傾向があるため、この問題の深刻度を高める。
機械学習者の確率予測を改善するために,いくつかの校正手法が提案されている。
本稿では,DMLフレームワーク内での確率校正手法について検討する。
シミュレーションの結果, 測定値の校正により, 有限試料の平均処理効果のDML推定値の根平均2乗誤差が著しく低減される可能性が示唆された。
実験例で示すとともに,DML推定器の漸近特性をキャリブレーションが変更しない条件を提供する。
関連論文リスト
- Automatic doubly robust inference for linear functionals via calibrated debiased machine learning [0.9694940903078658]
本稿では2つの頑健な推論のためのバイアス付き機械学習推定器を提案する。
C-DML推定器は、結果回帰または線形汎函数のリース表現器が十分に推定されたときに線形性を維持する。
我々の理論的および実証的な結果は、ニュアンス関数の不一致または遅い推定によるバイアスを軽減するためにC-DMLの使用を支持する。
論文 参考訳(メタデータ) (2024-11-05T03:32:30Z) - Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Calibrated Large Language Models for Binary Question Answering [49.1574468325115]
よく校正されたモデルは、その予測が正しい可能性を正確に反映する確率を生成するべきである。
本稿では、帰納的Venn-Abers予測器(IVAP)を用いて、バイナリラベルに対応する出力トークンに関連する確率をキャリブレーションする手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T09:31:03Z) - Calibrating doubly-robust estimators with unbalanced treatment assignment [0.0]
本稿では、確率スコアモデリングのためのデータをアンサンプするDML推定器の簡単な拡張を提案する。
本論文は, 推定器が推定器の特性を保ち, 校正値が元の分布に一致することを示す理論的結果を提供する。
論文 参考訳(メタデータ) (2024-03-03T18:40:11Z) - Calibrated and Conformal Propensity Scores for Causal Effect Estimation [10.209143402485406]
学習された確率スコアモデルの確率的出力は校正されるべきである。
校正確率スコアはGWAS解析の速度を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-06-01T06:26:26Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
有限検証データセットを用いた予測モデルの誤校正を仮説検証問題として検討する。
誤校正の検出は、クラスの条件付き確率が予測の十分滑らかな関数である場合にのみ可能である。
我々は、$ell$-Expected Error(ECE)のデバイアスドプラグイン推定器に基づくキャリブレーションのためのミニマックステストであるT-Calを提案する。
論文 参考訳(メタデータ) (2022-03-03T16:58:54Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。