論文の概要: User-oriented Fairness in Recommendation
- arxiv url: http://arxiv.org/abs/2104.10671v1
- Date: Wed, 21 Apr 2021 17:50:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:30:16.408288
- Title: User-oriented Fairness in Recommendation
- Title(参考訳): 勧告におけるユーザ指向フェアネス
- Authors: Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, Yongfeng Zhang
- Abstract要約: 我々は,レコメンダシステムにおける不公平性問題に対して,ユーザの視点から対処する。
ユーザの行動レベルに応じて、有利で不利なグループにグループ化します。
提案手法は,レコメンデーションシステムにおけるユーザのグループ公平性を向上するだけでなく,全体的なレコメンデーション性能も向上する。
- 参考スコア(独自算出の注目度): 21.651482297198687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a highly data-driven application, recommender systems could be affected by
data bias, resulting in unfair results for different data groups, which could
be a reason that affects the system performance. Therefore, it is important to
identify and solve the unfairness issues in recommendation scenarios. In this
paper, we address the unfairness problem in recommender systems from the user
perspective. We group users into advantaged and disadvantaged groups according
to their level of activity, and conduct experiments to show that current
recommender systems will behave unfairly between two groups of users.
Specifically, the advantaged users (active) who only account for a small
proportion in data enjoy much higher recommendation quality than those
disadvantaged users (inactive). Such bias can also affect the overall
performance since the disadvantaged users are the majority. To solve this
problem, we provide a re-ranking approach to mitigate this unfairness problem
by adding constraints over evaluation metrics. The experiments we conducted on
several real-world datasets with various recommendation algorithms show that
our approach can not only improve group fairness of users in recommender
systems, but also achieve better overall recommendation performance.
- Abstract(参考訳): 高度にデータ駆動のアプリケーションとして、レコメンダシステムはデータバイアスの影響を受け、異なるデータグループに対して不公平な結果をもたらす可能性がある。
したがって、推薦シナリオにおける不公平な問題を特定し解決することが重要である。
本稿では,ユーザの視点から,推薦システムにおける不公平性の問題に対処する。
ユーザをその活動レベルに応じて有利で不利なグループに分類し、現在の推奨システムは2つのグループ間で不公平に振る舞うことを示す実験を行う。
特に、少ないデータしか占めていない有利なユーザー(アクティブ)は、不利なユーザー(アクティブでない)よりもはるかに高いレコメンデーション品質を享受する。
このようなバイアスは、不利なユーザが最も多いため、全体的なパフォーマンスにも影響します。
この問題を解決するために,評価指標に制約を加えることにより,不公平な問題を緩和する手法を提案する。
様々な推薦アルゴリズムを用いた実世界のデータセットを用いて行った実験により,提案手法は推薦システムにおけるユーザのグループフェアネスを向上するだけでなく,全体的な推薦性能の向上も達成できることがわかった。
関連論文リスト
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
人気アイテムの小さなセットが、高い相互作用率のために推奨結果を支配している。
この現象は、ニッチな興味のある人を無視しながら、メインストリームの趣味を持つユーザーに不当に利益をもたらす。
本稿では,推薦モデルのトレーニングプロセスに介入することで,この問題に対処するプロセス内アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-07T08:34:18Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z) - Equal Experience in Recommender Systems [21.298427869586686]
我々は、バイアスデータの存在下で不公平を規制するために、新しい公正の概念(平等な経験と呼ぶ)を導入する。
本稿では、正規化項としての公正性の概念を取り入れた最適化フレームワークを提案し、最適化を解く計算効率の良いアルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-10-12T05:53:05Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
公正を意識した推薦システムは、異なるユーザーグループを同様に扱うことを目的としている。
本稿では,ユーザ中心の公平度を再評価するフレームワークを提案する。
我々は、ユーザ(NDCGなど)とアイテム(新規性、アイテムフェアネスなど)の両方から、フレームワークの再ランク付けによる最終的なレコメンデーションを評価する。
論文 参考訳(メタデータ) (2022-05-17T12:36:30Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
本稿では,消費者と生産者の両面から共同で問題をモデル化する,露出公正度尺度のファミリを定式化する。
具体的には、双方の利害関係者に対するグループ属性について、個別のユーザや項目を超えて、より体系的なバイアスを推奨するフェアネスの懸念を識別し緩和する。
論文 参考訳(メタデータ) (2022-04-29T19:13:23Z) - The Unfairness of Active Users and Popularity Bias in Point-of-Interest
Recommendation [4.578469978594752]
本稿では, (i) アクティブユーザの不公平さ, (ii) 人気項目の不公平さ, (iii) 調査三角形の3つの角度として推薦の精度について検討する。
アイテムフェアネスでは、アイテムをショートヘッド、ミッドテール、ロングテールグループに分割し、これらのアイテムグループの露出をユーザのトップkレコメンデーションリストにまとめる。
本研究は, 消費者と生産者の公正性を両立させることができず, 自然バイアスが原因と考えられる変数間のトレードオフが示唆されている。
論文 参考訳(メタデータ) (2022-02-27T08:02:19Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
レコメンダーシステムにおけるバイアス管理の欠如は、少数派が不公平な勧告を受けることになる。
本稿では,ユーザの人口統計情報を知ることなく,公平さと正確さを最適なバランスで組み合わせたDeep Learningベースの協調フィルタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。