User-oriented Fairness in Recommendation
- URL: http://arxiv.org/abs/2104.10671v1
- Date: Wed, 21 Apr 2021 17:50:31 GMT
- Title: User-oriented Fairness in Recommendation
- Authors: Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, Yongfeng Zhang
- Abstract summary: We address the unfairness problem in recommender systems from the user perspective.
We group users into advantaged and disadvantaged groups according to their level of activity.
Our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
- Score: 21.651482297198687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a highly data-driven application, recommender systems could be affected by
data bias, resulting in unfair results for different data groups, which could
be a reason that affects the system performance. Therefore, it is important to
identify and solve the unfairness issues in recommendation scenarios. In this
paper, we address the unfairness problem in recommender systems from the user
perspective. We group users into advantaged and disadvantaged groups according
to their level of activity, and conduct experiments to show that current
recommender systems will behave unfairly between two groups of users.
Specifically, the advantaged users (active) who only account for a small
proportion in data enjoy much higher recommendation quality than those
disadvantaged users (inactive). Such bias can also affect the overall
performance since the disadvantaged users are the majority. To solve this
problem, we provide a re-ranking approach to mitigate this unfairness problem
by adding constraints over evaluation metrics. The experiments we conducted on
several real-world datasets with various recommendation algorithms show that
our approach can not only improve group fairness of users in recommender
systems, but also achieve better overall recommendation performance.
Related papers
- A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - Equal Experience in Recommender Systems [21.298427869586686]
We introduce a novel fairness notion (that we call equal experience) to regulate unfairness in the presence of biased data.
We propose an optimization framework that incorporates the fairness notion as a regularization term, as well as introduce computationally-efficient algorithms that solve the optimization.
arXiv Detail & Related papers (2022-10-12T05:53:05Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
A fairness-aware recommender system aims to treat different user groups similarly.
We propose a user-centered fairness re-ranking framework applied on top of a base ranking model.
We evaluate the final recommendations provided by the re-ranking framework from both user- (e.g., NDCG) and item-side (e.g., novelty, item-fairness) metrics.
arXiv Detail & Related papers (2022-05-17T12:36:30Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems [5.145741425164946]
We present an optimization-based re-ranking approach that seamlessly integrates fairness constraints from both the consumer and producer-side.
We demonstrate through large-scale experiments on 8 datasets that our proposed method is capable of improving both consumer and producer fairness without reducing overall recommendation quality.
arXiv Detail & Related papers (2022-04-17T20:38:02Z) - The Unfairness of Active Users and Popularity Bias in Point-of-Interest
Recommendation [4.578469978594752]
This paper studies the interplay between (i) the unfairness of active users, (ii) the unfairness of popular items, and (iii) the accuracy of recommendation as three angles of our study triangle.
For item fairness, we divide items into short-head, mid-tail, and long-tail groups and study the exposure of these item groups into the top-k recommendation list of users.
Our study shows that most recommendation models cannot satisfy both consumer and producer fairness, indicating a trade-off between these variables possibly due to natural biases in data.
arXiv Detail & Related papers (2022-02-27T08:02:19Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations.
We propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users.
arXiv Detail & Related papers (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.