Fairness-Aware Explainable Recommendation over Knowledge Graphs
- URL: http://arxiv.org/abs/2006.02046v2
- Date: Sun, 28 Jun 2020 02:34:35 GMT
- Title: Fairness-Aware Explainable Recommendation over Knowledge Graphs
- Authors: Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang,
Yingqiang Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang, Gerard de
Melo
- Abstract summary: We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
- Score: 73.81994676695346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been growing attention on fairness considerations recently,
especially in the context of intelligent decision making systems. Explainable
recommendation systems, in particular, may suffer from both explanation bias
and performance disparity. In this paper, we analyze different groups of users
according to their level of activity, and find that bias exists in
recommendation performance between different groups. We show that inactive
users may be more susceptible to receiving unsatisfactory recommendations, due
to insufficient training data for the inactive users, and that their
recommendations may be biased by the training records of more active users, due
to the nature of collaborative filtering, which leads to an unfair treatment by
the system. We propose a fairness constrained approach via heuristic re-ranking
to mitigate this unfairness problem in the context of explainable
recommendation over knowledge graphs. We experiment on several real-world
datasets with state-of-the-art knowledge graph-based explainable recommendation
algorithms. The promising results show that our algorithm is not only able to
provide high-quality explainable recommendations, but also reduces the
recommendation unfairness in several respects.
Related papers
- FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
We study how to implement high-quality data augmentation to improve recommendation fairness.
Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework.
We show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy.
arXiv Detail & Related papers (2024-10-23T04:43:03Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - Equal Experience in Recommender Systems [21.298427869586686]
We introduce a novel fairness notion (that we call equal experience) to regulate unfairness in the presence of biased data.
We propose an optimization framework that incorporates the fairness notion as a regularization term, as well as introduce computationally-efficient algorithms that solve the optimization.
arXiv Detail & Related papers (2022-10-12T05:53:05Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
A fairness-aware recommender system aims to treat different user groups similarly.
We propose a user-centered fairness re-ranking framework applied on top of a base ranking model.
We evaluate the final recommendations provided by the re-ranking framework from both user- (e.g., NDCG) and item-side (e.g., novelty, item-fairness) metrics.
arXiv Detail & Related papers (2022-05-17T12:36:30Z) - User-oriented Fairness in Recommendation [21.651482297198687]
We address the unfairness problem in recommender systems from the user perspective.
We group users into advantaged and disadvantaged groups according to their level of activity.
Our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
arXiv Detail & Related papers (2021-04-21T17:50:31Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations.
We propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users.
arXiv Detail & Related papers (2020-06-09T13:39:38Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.