論文の概要: Scaling of neural-network quantum states for time evolution
- arxiv url: http://arxiv.org/abs/2104.10696v1
- Date: Wed, 21 Apr 2021 18:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 02:59:35.944050
- Title: Scaling of neural-network quantum states for time evolution
- Title(参考訳): 時間発展のためのニューラルネットワーク量子状態のスケーリング
- Authors: Sheng-Hsuan Lin, Frank Pollmann
- Abstract要約: 非可積分量子イジングチェーンのグローバルダイナミクスをシミュレートするために、異なる浅層および深層神経自己回帰量子状態の変動パワーをベンチマークする。
与えられた精度で量子状態を表現するのに必要なパラメータの数が指数関数的に増加することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating quantum many-body dynamics on classical computers is a challenging
problem due to the exponential growth of the Hilbert space. Artificial neural
networks have recently been introduced as a new tool to approximate
quantum-many body states. We benchmark the variational power of different
shallow and deep neural autoregressive quantum states to simulate global quench
dynamics of a non-integrable quantum Ising chain. We find that the number of
parameters required to represent the quantum state at a given accuracy
increases exponentially in time. The growth rate is only slightly affected by
the network architecture over a wide range of different design choices: shallow
and deep networks, small and large filter sizes, dilated and normal
convolutions, with and without shortcut connections.
- Abstract(参考訳): 古典的コンピュータ上での量子多体ダイナミクスのシミュレーションはヒルベルト空間の指数関数的な成長のために難しい問題である。
人工ニューラルネットワークは、量子マニピュレーション状態の近似のための新しいツールとして最近導入された。
非可積分量子イジングチェーンのグローバルクエンチダイナミクスをシミュレートするために、異なる浅層および深層神経自己回帰量子状態の変動パワーをベンチマークする。
与えられた精度で量子状態を表現するために必要なパラメータの数は、時間とともに指数関数的に増加する。
成長速度は、浅層と深層ネットワーク、小さなフィルターサイズと大きなフィルターサイズ、拡張された通常の畳み込み、近距離接続の有無といった、幅広い設計上の選択において、ネットワークアーキテクチャによってのみ影響される。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
本稿では,量子ニューラルネットワークのための新しい量子ニューラルネットワークモデルを提案する。
我々のモデルは、状態空間のサイズがニューロンの数とともに指数関数的に大きくなるという問題を回避している。
我々は手書き文字認識や他の非線形分類タスクのモデルをベンチマークする。
論文 参考訳(メタデータ) (2023-05-15T11:16:47Z) - ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation [5.283885355422517]
我々は,テンソルネットワークと自己回帰ニューラルネットワークを橋渡しする新しいアーキテクチャであるAutoregressive NeuralNetを開発した。
自己回帰ニューラルネットワークは、正規化波動関数をパラメータ化し、テンソルネットワークと自己回帰ニューラルネットワークの表現性を一般化し、自己回帰ニューラルネットワークから様々な対称性を継承することを示す。
我々の研究は、量子多体物理シミュレーション、量子技術設計、人工知能における生成モデリングの新しい機会を開く。
論文 参考訳(メタデータ) (2023-04-04T17:54:14Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification [0.0]
本稿では,各ニューロンが変動量子回路であるハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
シミュレーションハードウェアでは、ハイブリッドニューラルネットワークは、個々の変動量子回路よりも約10%高い分類精度とコストの20%の最小化を実現している。
論文 参考訳(メタデータ) (2022-01-05T21:06:30Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
量子フーリエ畳み込みネットワーク(Quantum Fourier Convolutional Network, QFCN)というハイブリッド量子古典回路を提案する。
提案モデルは,古典的CNNと比較して指数的な高速化を実現し,既存の量子CNNの最良の結果よりも向上する。
交通予測や画像分類など,さまざまなディープラーニングタスクに適用することで,このアーキテクチャの可能性を示す。
論文 参考訳(メタデータ) (2021-06-19T04:37:39Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。