論文の概要: CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2408.15462v1
- Date: Wed, 28 Aug 2024 00:56:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:32:58.770499
- Title: CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks
- Title(参考訳): CTRQNetsとLQNets:連続時間リカレントと液体量子ニューラルネットワーク
- Authors: Alejandro Mayorga, Alexander Yuan, Andrew Yuan, Tyler Wooldridge, Xiaodi Wang,
- Abstract要約: Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 76.53016529061821
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks have continued to gain prevalence in the modern era for their ability to model complex data through pattern recognition and behavior remodeling. However, the static construction of traditional neural networks inhibits dynamic intelligence. This makes them inflexible to temporal changes in data and unfit to capture complex dependencies. With the advent of quantum technology, there has been significant progress in creating quantum algorithms. In recent years, researchers have developed quantum neural networks that leverage the capabilities of qubits to outperform classical networks. However, their current formulation exhibits a static construction limiting the system's dynamic intelligence. To address these weaknesses, we develop a Liquid Quantum Neural Network (LQNet) and a Continuous Time Recurrent Quantum Neural Network (CTRQNet). Both models demonstrate a significant improvement in accuracy compared to existing quantum neural networks (QNNs), achieving accuracy increases as high as 40\% on CIFAR 10 through binary classification. We propose LQNets and CTRQNets might shine a light on quantum machine learning's black box.
- Abstract(参考訳): ニューラルネットワークは、パターン認識や振る舞いのリモデリングを通じて複雑なデータをモデル化する能力によって、現代でも普及し続けている。
しかし、従来のニューラルネットワークの静的構築は、動的インテリジェンスを阻害する。
これにより、データの時間的変化に対して柔軟性がなく、複雑な依存関係をキャプチャするのに適さない。
量子技術の出現により、量子アルゴリズムの作成に大きな進歩があった。
近年、量子ニューラルネットワークは量子ビットの能力を利用して古典的ネットワークを上回りつつある。
しかし、現在の定式化はシステムのダイナミックインテリジェンスを制限する静的な構造を示している。
これらの弱点に対処するため,LQNet(Liquid Quantum Neural Network)とCTRQNet(Continuous Time Recurrent Quantum Neural Network)を開発した。
どちらのモデルも既存の量子ニューラルネットワーク(QNN)と比較して精度が大幅に向上し、バイナリ分類によってCIFAR 10では最大40%の精度向上を実現している。
我々はLQNetsとCTRQNetsを提案し、量子機械学習のブラックボックスに光を当てるかもしれない。
関連論文リスト
- ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
量子フーリエ畳み込みネットワーク(Quantum Fourier Convolutional Network, QFCN)というハイブリッド量子古典回路を提案する。
提案モデルは,古典的CNNと比較して指数的な高速化を実現し,既存の量子CNNの最良の結果よりも向上する。
交通予測や画像分類など,さまざまなディープラーニングタスクに適用することで,このアーキテクチャの可能性を示す。
論文 参考訳(メタデータ) (2021-06-19T04:37:39Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。