論文の概要: Aedes-AI: Neural Network Models of Mosquito Abundance
- arxiv url: http://arxiv.org/abs/2104.10771v1
- Date: Wed, 21 Apr 2021 21:28:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-23 13:43:10.717799
- Title: Aedes-AI: Neural Network Models of Mosquito Abundance
- Title(参考訳): Aedes-AI: モスキート分布のニューラルネットワークモデル
- Authors: Adrienne C. Kinney, Sean Current, Joceline Lega
- Abstract要約: 本研究では,フィードフォワードニューラルネットワーク,短期メモリゲート型ニューラルネットワーク,リカレントユニットを開発した。
蚊集団の反復的な特徴を機械的モデルにより再現できるネットワークの評価を行った。
我々は,このような方程式のないモデルがベクトル制御や任意の空間スケールでの疾病リスクの予測をいかに促進するかを展望する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present artificial neural networks as a feasible replacement for a
mechanistic model of mosquito abundance. We develop a feed-forward neural
network, a long short-term memory recurrent neural network, and a gated
recurrent unit network. We evaluate the networks in their ability to replicate
the spatiotemporal features of mosquito populations predicted by the
mechanistic model, and discuss how augmenting the training data with both
actual and artificially created time series affects model performance. We
conclude with an outlook on how such equation-free models may facilitate vector
control or the estimation of disease risk at arbitrary spatial scales.
- Abstract(参考訳): 人工ニューラルネットワークは,蚊数の力学モデルに取って代わることが可能である。
本研究では,フィードフォワードニューラルネットワーク,長期記憶リカレントニューラルネットワーク,ゲート再カレントユニットネットワークを開発した。
本研究では,蚊集団の時空間的特徴を機械モデルで再現するネットワークの評価を行い,実時間と人工時間の両方でトレーニングデータの強化がモデル性能に与える影響を考察した。
このような方程式のないモデルが,任意の空間スケールでのベクトル制御や病気リスクの推定をいかに促進するか,という視点で結論付ける。
関連論文リスト
- How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Spiking Generative Adversarial Network with Attention Scoring Decoding [4.5727987473456055]
スパイクニューラルネットワークは、脳のような処理に近づいた近似を提供する。
我々は複雑な画像を扱うことができるスパイク生成対向ネットワークを構築した。
論文 参考訳(メタデータ) (2023-05-17T14:35:45Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Quadratic models for understanding catapult dynamics of neural networks [15.381097076708535]
近年提案されたニューラル二次モデルでは,そのようなモデルを大きな学習率で訓練する際に生じる「カタパルト相」が示されることが示されている。
さらに,2次モデルがニューラルネットワーク解析の有効なツールであることを示す。
論文 参考訳(メタデータ) (2022-05-24T05:03:06Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
我々は、時系列予測のための繰り返しニューラルネットワークの適応を提案するために、深部生成モデルと状態空間モデルの概念の進歩を活用する。
私たちのモデルは、すべての関連情報が隠された状態でカプセル化されるリカレントニューラルネットワークのアーキテクチャ的な動作を保ち、この柔軟性により、モデルはシーケンシャルモデリングのために任意のディープアーキテクチャに簡単に統合できます。
論文 参考訳(メタデータ) (2021-04-26T01:43:43Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。