論文の概要: Learning to Learn with Generative Models of Neural Network Checkpoints
- arxiv url: http://arxiv.org/abs/2209.12892v1
- Date: Mon, 26 Sep 2022 17:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 15:03:54.937499
- Title: Learning to Learn with Generative Models of Neural Network Checkpoints
- Title(参考訳): ニューラルネットワークチェックポイントの生成モデルによる学習
- Authors: William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros,
Jitendra Malik
- Abstract要約: ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
- 参考スコア(独自算出の注目度): 71.06722933442956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a data-driven approach for learning to optimize neural networks.
We construct a dataset of neural network checkpoints and train a generative
model on the parameters. In particular, our model is a conditional diffusion
transformer that, given an initial input parameter vector and a prompted loss,
error, or return, predicts the distribution over parameter updates that achieve
the desired metric. At test time, it can optimize neural networks with unseen
parameters for downstream tasks in just one update. We find that our approach
successfully generates parameters for a wide range of loss prompts. Moreover,
it can sample multimodal parameter solutions and has favorable scaling
properties. We apply our method to different neural network architectures and
tasks in supervised and reinforcement learning.
- Abstract(参考訳): ニューラルネットワークを最適化するための学習のためのデータ駆動アプローチを探求する。
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
特に、我々のモデルは、初期入力パラメータベクトルと引き起こされた損失、エラー、返却を与えられた条件拡散変換器であり、所望のメトリックを達成するパラメータ更新の分布を予測する。
テスト時には、1回の更新でダウンストリームタスクの未確認パラメータでニューラルネットワークを最適化することができる。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
さらに、マルチモーダルパラメータのソリューションをサンプリングすることができ、スケーリング特性も良好である。
本手法は,教師付き学習と強化学習において異なるニューラルネットワークアーキテクチャとタスクに適用する。
関連論文リスト
- Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
大規模なデータセットでトレーニングされた大規模なニューラルネットワークは、マシンラーニングの主要なパラダイムになっています。
この論文は、モデル不確実性を持つニューラルネットワークを装備するためのスケーラブルな手法を開発する。
論文 参考訳(メタデータ) (2024-04-29T23:38:58Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork(CHN)は、ベースモデルを新機能に拡張するためのパラメータを生成する。
予測時、CHNはニューラルネットワークを通る単一のフォワードパスのみを必要とし、大幅なスピードアップをもたらす。
本システムでは,既存のインプテーションやメタラーニングベースラインよりも,新しい特徴のマイズショット学習性能が向上することを示す。
論文 参考訳(メタデータ) (2021-04-12T23:19:49Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - A Hybrid Objective Function for Robustness of Artificial Neural Networks
-- Estimation of Parameters in a Mechanical System [0.0]
本稿では,加速度プロファイルに基づく機械車両モデルのパラメータ推定の課題について考察する。
未知のパラメータが異なる車両モデル群に対するパラメータを予測できる畳み込みニューラルネットワークアーキテクチャを導入する。
論文 参考訳(メタデータ) (2020-04-16T15:06:43Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
本研究では,高忠実度モデルと低忠実度モデルの両方から生成された学習データを用いた伝達学習手法の適用について検討する。
前者のアプローチでは、低忠実度データに基づいて、入力を関心の出力にマッピングするニューラルネットワークモデルを訓練する。
次に、高忠実度データを使用して、低忠実度ネットワークの上層(s)のパラメータを適応させたり、より単純なニューラルネットワークをトレーニングして、低忠実度ネットワークの出力を高忠実度モデルのパラメータにマッピングする。
論文 参考訳(メタデータ) (2020-02-11T15:56:11Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。