BEVDetNet: Bird's Eye View LiDAR Point Cloud based Real-time 3D Object
Detection for Autonomous Driving
- URL: http://arxiv.org/abs/2104.10780v1
- Date: Wed, 21 Apr 2021 22:06:39 GMT
- Title: BEVDetNet: Bird's Eye View LiDAR Point Cloud based Real-time 3D Object
Detection for Autonomous Driving
- Authors: Sambit Mohapatra, Senthil Yogamani, Heinrich Gotzig, Stefan Milz and
Patrick Mader
- Abstract summary: We propose a novel semantic segmentation architecture as a single unified model for object center detection using key points, box predictions and orientation prediction.
The proposed architecture can be trivially extended to include semantic segmentation classes like road without any additional computation.
The model is 5X faster than other top accuracy models with a minimal accuracy degradation of 2% in Average Precision at IoU=0.5 on KITTI dataset.
- Score: 6.389322215324224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR based 3D object detection is a crucial module in autonomous driving
particularly for long range sensing. Most of the research is focused on
achieving higher accuracy and these models are not optimized for deployment on
embedded systems from the perspective of latency and power efficiency. For high
speed driving scenarios, latency is a crucial parameter as it provides more
time to react to dangerous situations. Typically a voxel or point-cloud based
3D convolution approach is utilized for this module. Firstly, they are
inefficient on embedded platforms as they are not suitable for efficient
parallelization. Secondly, they have a variable runtime due to level of
sparsity of the scene which is against the determinism needed in a safety
system. In this work, we aim to develop a very low latency algorithm with fixed
runtime. We propose a novel semantic segmentation architecture as a single
unified model for object center detection using key points, box predictions and
orientation prediction using binned classification in a simpler Bird's Eye View
(BEV) 2D representation. The proposed architecture can be trivially extended to
include semantic segmentation classes like road without any additional
computation. The proposed model has a latency of 4 ms on the embedded Nvidia
Xavier platform. The model is 5X faster than other top accuracy models with a
minimal accuracy degradation of 2% in Average Precision at IoU=0.5 on KITTI
dataset.
Related papers
- UltimateDO: An Efficient Framework to Marry Occupancy Prediction with 3D Object Detection via Channel2height [2.975860548186652]
Occupancy and 3D object detection are two standard tasks in modern autonomous driving system.
We propose a method to achieve fast 3D object detection and occupancy prediction (UltimateDO)
arXiv Detail & Related papers (2024-09-17T13:14:13Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
We propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection.
We use point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement.
We conduct extensive experiments on the large-scale dataset to demonstrate that our approach performs well against state-of-the-art methods.
arXiv Detail & Related papers (2023-12-13T18:59:13Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic
Segmentation [8.944151935020992]
We propose Cascade Point-Grid Fusion Network (CPGNet), which ensures both effectiveness and efficiency.
CPGNet without ensemble models or TTA is comparable with the state-of-the-art RPVNet, while it runs 4.7 times faster.
arXiv Detail & Related papers (2022-04-21T06:56:30Z) - Improved Pillar with Fine-grained Feature for 3D Object Detection [23.348710029787068]
3D object detection with LiDAR point clouds plays an important role in autonomous driving perception module.
Existing point-based methods are challenging to reach the speed requirements because of too many raw points.
The 2D grid-based methods, such as PointPillar, can easily achieve a stable and efficient speed based on simple 2D convolution.
arXiv Detail & Related papers (2021-10-12T14:53:14Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds [2.924868086534434]
This paper introduces a novel approach for 3D point cloud semantic segmentation that exploits multiple projections of the point cloud.
Our Multi-Projection Fusion framework analyzes spherical and bird's-eye view projections using two separate highly-efficient 2D fully convolutional models.
arXiv Detail & Related papers (2020-11-03T19:40:43Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.