Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps
- URL: http://arxiv.org/abs/2104.10839v2
- Date: Fri, 23 Apr 2021 01:33:06 GMT
- Title: Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps
- Authors: Chithrabhanu Perumangatt, Tom Vergoossen, Alexander Lohrmann, Srihari
Sivasankaran, Ayesha Reezwana, Ali Anwar, Subash Sachidananda, Tanvirul
Islam, Alexander Ling
- Abstract summary: SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
- Score: 94.08853042978113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum sources and receivers operating on-board satellites are an essential
building block for global quantumnetworks. SpooQy-1 is a satellite developed at
the Centre for Quantum Technologies, which has successfully demonstrated the
operation of an entangled photon pair source on a resource-constrained CubeSat
platform. This miniaturized and ruggedized photon pair source is being upgraded
to be capable of space-to-ground quantum keydistribution and long-range
entanglement distribution. In this paper, we share results from SpooQy-1,
discuss their relevance for the engineering challenges of a small satellite
quantum node, and report on the development of the new light source.
Related papers
- Quantum Teleportation with Telecom Photons from Remote Quantum Emitters [0.0]
The quest for a global quantum internet is based on the realization of a scalable network which requires quantum hardware with exceptional performance.
Here we realize full-photonic quantum teleportation employing one of the most promising platforms, i.e. semiconductor quantum dots.
The frequency mismatch between the triggered sources is erased using two polarization-preserving quantum frequency converters.
arXiv Detail & Related papers (2024-11-19T22:42:36Z) - Quantum teleportation with dissimilar quantum dots over a hybrid quantum network [24.574514809868866]
Photonic quantum information processing in quantum networks lays the foundation for cloud quantum computing, secure communication, and the realization of a global quantum internet.
Here, we demonstrate the exploitation of distinct quantum emitters to implement all-photonic quantum teleportation among distant parties.
The achieved teleportation state fidelity reaches up to 82+-1%, above the classical limit by more than 10 standard deviations.
arXiv Detail & Related papers (2024-11-19T10:16:58Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - Quantum Communication Using Semiconductor Quantum Dots [0.0]
Review focuses on implementations of, and building blocks for, quantum communication using quantum-light sources based on epitaxial semiconductor quantum dots.
Recent progress towards quantum-secured communication networks as well as building blocks thereof is summarized.
arXiv Detail & Related papers (2021-08-31T14:32:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.