論文の概要: Online GANs for Automatic Performance Testing
- arxiv url: http://arxiv.org/abs/2104.11069v1
- Date: Wed, 21 Apr 2021 06:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 03:08:05.108176
- Title: Online GANs for Automatic Performance Testing
- Title(参考訳): 自動パフォーマンステストのためのオンラインGAN
- Authors: Ivan Porres and Hergys Rexha and S\'ebastien Lafond
- Abstract要約: GAN(Generative Adversarial Network)のオンライン版を利用した自動パフォーマンステストのための新しいアルゴリズムを提案する。
提案手法では、テスト中のシステムの事前のトレーニングセットやモデルを必要としない。
我々は,提案アルゴリズムが概念実証として機能し,GANの試験生成への応用に関する研究議論の火花となることを期待する。
- 参考スコア(独自算出の注目度): 0.10312968200748115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we present a novel algorithm for automatic performance testing
that uses an online variant of the Generative Adversarial Network (GAN) to
optimize the test generation process. The objective of the proposed approach is
to generate, for a given test budget, a test suite containing a high number of
tests revealing performance defects. This is achieved using a GAN to generate
the tests and predict their outcome. This GAN is trained online while
generating and executing the tests. The proposed approach does not require a
prior training set or model of the system under test. We provide an initial
evaluation the algorithm using an example test system, and compare the obtained
results with other possible approaches.
We consider that the presented algorithm serves as a proof of concept and we
hope that it can spark a research discussion on the application of GANs to test
generation.
- Abstract(参考訳): 本稿では,gan(generative adversarial network)のオンライン変種を用いてテスト生成プロセスを最適化した,自動パフォーマンステストのための新しいアルゴリズムを提案する。
提案手法の目的は、所定のテスト予算に対して、パフォーマンスの欠陥を明らかにする多数のテストを含むテストスイートを生成することである。
これはGANを使ってテストを生成し、その結果を予測する。
このGANは、テストの生成と実行をオンラインでトレーニングする。
提案手法では、テスト中のシステムの事前のトレーニングセットやモデルを必要としない。
実例テストシステムを用いてアルゴリズムの初期評価を行い、得られた結果を他の可能なアプローチと比較する。
我々は,提案アルゴリズムが概念実証として機能し,GANの試験生成への応用に関する研究議論の火花となることを期待する。
関連論文リスト
- Adaptive Testing for LLM-Based Applications: A Diversity-based Approach [15.33985438101206]
本稿では,適応ランダムテスト(ART)のような多様性に基づくテスト手法が,プロンプトテンプレートのテストに効果的に適用可能であることを示す。
いくつかの文字列ベース距離を探索する様々な実装を用いて得られた結果,本手法が試験予算の削減による故障の発見を可能にすることを確認した。
論文 参考訳(メタデータ) (2025-01-23T08:53:12Z) - Introducing Ensemble Machine Learning Algorithms for Automatic Test Case Generation using Learning Based Testing [0.0]
Ensemble法は、複数のモデルを組み合わせて予測能力を向上し、一般化エラーを低減する強力な機械学習アルゴリズムである。
本研究では,学習ベーステスト(LBT)アルゴリズムにおけるモデル推論のためのアンサンブル手法とベース分類器の組み合わせを体系的に検討し,SUTの故障検出テストケースを概念実証として生成することを目的とする。
論文 参考訳(メタデータ) (2024-09-06T23:24:59Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [117.72709110877939]
テスト時間適応(TTA)は、事前訓練されたモデルをテスト中に、予測する前にラベルのないデータに適応する可能性がある。
TTAはテスト時間領域適応、テスト時間バッチ適応、オンラインテスト時間適応といったテストデータの形態に基づいて、いくつかの異なるグループに分類される。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Machine Learning Testing in an ADAS Case Study Using
Simulation-Integrated Bio-Inspired Search-Based Testing [7.5828169434922]
Deeperは、ディープニューラルネットワークベースの車線保持システムをテストするための障害検出テストシナリオを生成する。
新たに提案されたバージョンでは、新しいバイオインスパイアされた検索アルゴリズム、遺伝的アルゴリズム(GA)、$(mu+lambda)$および$(mu,lambda)$進化戦略(ES)、およびParticle Swarm Optimization(PSO)を利用する。
評価の結果,Deeperで新たに提案したテストジェネレータは,以前のバージョンよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-22T20:27:40Z) - Boost Test-Time Performance with Closed-Loop Inference [85.43516360332646]
そこで本研究では,モデル性能を高めるために,ループ方式でハードクラス化試験サンプルを予測することを提案する。
まず、追加の推論ループを必要とするハードクラス化テストサンプルを識別するためにフィルタリング基準を考案する。
各ハードサンプルに対して、モデルのキャリブレーションを行うために、元の上位$K$予測に基づいて補助学習タスクを構築する。
論文 参考訳(メタデータ) (2022-03-21T10:20:21Z) - Efficient and Effective Generation of Test Cases for Pedestrian
Detection -- Search-based Software Testing of Baidu Apollo in SVL [14.482670650074885]
本稿では,SVLシミュレータ内での自律走行プラットフォームであるBaidu Apolloの歩行者検出と緊急制動システムの試験について述べる。
本稿では,SVL環境におけるApolloの障害検出シナリオを生成する進化的自動テスト生成手法を提案する。
また,本手法の有効性と有効性を示すため,ベースラインランダム生成手法の結果も報告する。
論文 参考訳(メタデータ) (2021-09-16T13:11:53Z) - Group Testing with Non-identical Infection Probabilities [59.96266198512243]
そこで我々は,集合形成法を用いた適応型グループテストアルゴリズムを開発した。
提案アルゴリズムは, エントロピー下界に近い性能を示す。
論文 参考訳(メタデータ) (2021-08-27T17:53:25Z) - Distribution-Aware Testing of Neural Networks Using Generative Models [5.618419134365903]
ディープニューラルネットワーク(DNN)をコンポーネントとして持つソフトウェアの信頼性は、緊急に重要である。
最近の3つのテスト手法が, かなりの数の不正なテスト入力を生成することを示す。
テスト生成プロセスにおいて,テスト中のDNNモデルの有効な入力空間を組み込む手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T17:18:21Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
病気の感染頻度が低い場合、Dorfman氏は80年前に、人のテストグループは個人でテストするよりも効率が良いことを示した。
本研究の目的は,ノイズの多い環境で動作可能な新しいグループテストアルゴリズムを提案することである。
論文 参考訳(メタデータ) (2020-04-26T23:41:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。