Noise-Robust Deep Spiking Neural Networks with Temporal Information
- URL: http://arxiv.org/abs/2104.11169v1
- Date: Thu, 22 Apr 2021 16:40:33 GMT
- Title: Noise-Robust Deep Spiking Neural Networks with Temporal Information
- Authors: Seongsik Park, Dongjin Lee, Sungroh Yoon
- Abstract summary: Spiking neural networks (SNNs) have emerged as energy-efficient neural networks with temporal information.
SNNs have shown a superior efficiency on neuromorphic devices, but the devices are susceptible to noise, which hinders them from being applied in real-world applications.
In this paper, we investigate the effect of noise on deep SNNs with various neural coding methods and present a noise-robust deep SNN with temporal information.
- Score: 22.278159848657754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs) have emerged as energy-efficient neural
networks with temporal information. SNNs have shown a superior efficiency on
neuromorphic devices, but the devices are susceptible to noise, which hinders
them from being applied in real-world applications. Several studies have
increased noise robustness, but most of them considered neither deep SNNs nor
temporal information. In this paper, we investigate the effect of noise on deep
SNNs with various neural coding methods and present a noise-robust deep SNN
with temporal information. With the proposed methods, we have achieved a deep
SNN that is efficient and robust to spike deletion and jitter.
Related papers
- DPSNN: Spiking Neural Network for Low-Latency Streaming Speech Enhancement [3.409728296852651]
Speech enhancement improves communication in noisy environments, affecting areas such as automatic speech recognition, hearing aids, and telecommunications.
Neuromorphic algorithms in the form of spiking neural networks (SNNs) have great potential.
We develop a two-phase time-domain streaming SNN framework -- the Dual-Path Spiking Neural Network (DPSNN)
arXiv Detail & Related papers (2024-08-14T09:08:43Z) - sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
Spiking Neural Networks (SNNs) are known to be biologically plausible and power-efficient.
This paper introduces a novel SNN-based Voice Activity Detection model, referred to as sVAD.
It provides effective auditory feature representation through SincNet and 1D convolution, and improves noise robustness with attention mechanisms.
arXiv Detail & Related papers (2024-03-09T02:55:44Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
Spiking Networks (SNNs) are a promising energy-efficient alternative to conventional artificial neural networks.
In this work, we focus on three key questions regarding inherent redundancy in SNNs.
We propose an Advance Attention (ASA) module to harness SNNs' redundancy.
arXiv Detail & Related papers (2023-08-16T08:58:25Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
Spiking Neural Networks (SNNs) have attracted the attention of the deep learning community for use in low-latency, low-power neuromorphic hardware.
In this paper, we introduce Spiking Phasor Neural Networks (SPNNs)
SPNNs are based on complex-valued Deep Neural Networks (DNNs), representing phases by spike times.
arXiv Detail & Related papers (2022-04-01T15:06:15Z) - Training Energy-Efficient Deep Spiking Neural Networks with
Time-to-First-Spike Coding [29.131030799324844]
Spiking neural networks (SNNs) mimic the operations in the human brain.
Deep neural networks (DNNs) have become a serious problem in deep learning.
This paper presents training methods for energy-efficient deep SNNs with TTFS coding.
arXiv Detail & Related papers (2021-06-04T16:02:27Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
Spiking neural network (SNN) is interesting due to its strong bio-plausibility and high energy efficiency.
However, its performance is falling far behind conventional deep neural networks (DNNs)
arXiv Detail & Related papers (2020-10-15T14:46:18Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.