DPSNN: Spiking Neural Network for Low-Latency Streaming Speech Enhancement
- URL: http://arxiv.org/abs/2408.07388v1
- Date: Wed, 14 Aug 2024 09:08:43 GMT
- Title: DPSNN: Spiking Neural Network for Low-Latency Streaming Speech Enhancement
- Authors: Tao Sun, Sander Bohté,
- Abstract summary: Speech enhancement improves communication in noisy environments, affecting areas such as automatic speech recognition, hearing aids, and telecommunications.
Neuromorphic algorithms in the form of spiking neural networks (SNNs) have great potential.
We develop a two-phase time-domain streaming SNN framework -- the Dual-Path Spiking Neural Network (DPSNN)
- Score: 3.409728296852651
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Speech enhancement (SE) improves communication in noisy environments, affecting areas such as automatic speech recognition, hearing aids, and telecommunications. With these domains typically being power-constrained and event-based while requiring low latency, neuromorphic algorithms in the form of spiking neural networks (SNNs) have great potential. Yet, current effective SNN solutions require a contextual sampling window imposing substantial latency, typically around 32ms, too long for many applications. Inspired by Dual-Path Spiking Neural Networks (DPSNNs) in classical neural networks, we develop a two-phase time-domain streaming SNN framework -- the Dual-Path Spiking Neural Network (DPSNN). In the DPSNN, the first phase uses Spiking Convolutional Neural Networks (SCNNs) to capture global contextual information, while the second phase uses Spiking Recurrent Neural Networks (SRNNs) to focus on frequency-related features. In addition, the regularizer suppresses activation to further enhance energy efficiency of our DPSNNs. Evaluating on the VCTK and Intel DNS Datasets, we demonstrate that our approach achieves the very low latency (approximately 5ms) required for applications like hearing aids, while demonstrating excellent signal-to-noise ratio (SNR), perceptual quality, and energy efficiency.
Related papers
- sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
Spiking Neural Networks (SNNs) are known to be biologically plausible and power-efficient.
This paper introduces a novel SNN-based Voice Activity Detection model, referred to as sVAD.
It provides effective auditory feature representation through SincNet and 1D convolution, and improves noise robustness with attention mechanisms.
arXiv Detail & Related papers (2024-03-09T02:55:44Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Single Channel Speech Enhancement Using U-Net Spiking Neural Networks [2.436681150766912]
Speech enhancement (SE) is crucial for reliable communication devices or robust speech recognition systems.
We propose a novel approach to SE using a spiking neural network (SNN) based on a U-Net architecture.
SNNs are suitable for processing data with a temporal dimension, such as speech, and are known for their energy-efficient implementation on neuromorphic hardware.
arXiv Detail & Related papers (2023-07-26T19:10:29Z) - Noise-Robust Deep Spiking Neural Networks with Temporal Information [22.278159848657754]
Spiking neural networks (SNNs) have emerged as energy-efficient neural networks with temporal information.
SNNs have shown a superior efficiency on neuromorphic devices, but the devices are susceptible to noise, which hinders them from being applied in real-world applications.
In this paper, we investigate the effect of noise on deep SNNs with various neural coding methods and present a noise-robust deep SNN with temporal information.
arXiv Detail & Related papers (2021-04-22T16:40:33Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention owing to their low power consumption.
We build versatile hybrid neural networks (HNNs) that improve the concerned performance.
arXiv Detail & Related papers (2021-02-21T12:03:16Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding [26.654533157221973]
This paper introduces the concept of time-to-first-spike coding into deep SNNs using the kernel-based dynamic threshold and dendrite to overcome the drawback.
According to our results, the proposed methods can reduce inference latency and number of spikes to 22% and less than 1%, compared to those of burst coding.
arXiv Detail & Related papers (2020-03-26T04:39:12Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
arXiv Detail & Related papers (2020-03-17T08:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.