Software-Defined Edge Computing: A New Architecture Paradigm to Support
IoT Data Analysis
- URL: http://arxiv.org/abs/2104.11645v2
- Date: Mon, 26 Apr 2021 02:39:57 GMT
- Title: Software-Defined Edge Computing: A New Architecture Paradigm to Support
IoT Data Analysis
- Authors: Di Wu, Xiaofeng Xie, Xiang Ni, Bin Fu, Hanhui Deng, Haibo Zeng, and
Zhijin Qin
- Abstract summary: We introduce in this paper features of IoT data, trends of IoT network architectures, some problems in IoT data analysis, and their solutions.
Specifically, we view that software-defined edge computing is a promising architecture to support the unique needs of IoT data analysis.
- Score: 21.016796500957977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid deployment of Internet of Things (IoT) applications leads to
massive data that need to be processed. These IoT applications have specific
communication requirements on latency and bandwidth, and present new features
on their generated data such as time-dependency. Therefore, it is desirable to
reshape the current IoT architectures by exploring their inherent nature of
communication and computing to support smart IoT data process and analysis. We
introduce in this paper features of IoT data, trends of IoT network
architectures, some problems in IoT data analysis, and their solutions.
Specifically, we view that software-defined edge computing is a promising
architecture to support the unique needs of IoT data analysis. We further
present an experiment on data anomaly detection in this architecture, and the
comparison between two architectures for ECG diagnosis. Results show that our
method is effective and feasible.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Digital Twin-Native AI-Driven Service Architecture for Industrial
Networks [2.2924151077053407]
We propose a DT-native AI-driven service architecture in support of the concept of IoT networks.
Within the proposed DT-native architecture, we implement a TCP-based data flow pipeline and a Reinforcement Learning (RL)-based learner model.
arXiv Detail & Related papers (2023-11-24T14:56:13Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Multi-Exit Vision Transformer for Dynamic Inference [88.17413955380262]
We propose seven different architectures for early exit branches that can be used for dynamic inference in Vision Transformer backbones.
We show that each one of our proposed architectures could prove useful in the trade-off between accuracy and speed.
arXiv Detail & Related papers (2021-06-29T09:01:13Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.