Agentic Search Engine for Real-Time IoT Data
- URL: http://arxiv.org/abs/2503.12255v1
- Date: Sat, 15 Mar 2025 20:46:17 GMT
- Title: Agentic Search Engine for Real-Time IoT Data
- Authors: Abdelrahman Elewah, Khalid Elgazzar,
- Abstract summary: The Internet of Things (IoT) has enabled diverse devices to communicate over the Internet, yet the fragmentation of IoT systems limits seamless data sharing and coordinated management.<n>This paper presents the IoT Agentic Search Engine (IoT-ASE), a real-time search engine tailored for IoT environments.
- Score: 1.9275428660922078
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Internet of Things (IoT) has enabled diverse devices to communicate over the Internet, yet the fragmentation of IoT systems limits seamless data sharing and coordinated management. We have recently introduced SensorsConnect, a unified framework to enable seamless content and sensor data sharing in collaborative IoT systems, inspired by how the World Wide Web (WWW) enabled a shared and accessible space for information among humans. This paper presents the IoT Agentic Search Engine (IoT-ASE), a real-time search engine tailored for IoT environments. IoT-ASE leverages Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) techniques to address the challenge of searching vast, real-time IoT data, enabling it to handle complex queries and deliver accurate, contextually relevant results. We implemented a use-case scenario in Toronto to demonstrate how IoT-ASE can improve service quality recommendations by leveraging real-time IoT data. Our evaluation shows that IoT-ASE achieves a 92\% accuracy in retrieving intent-based services and produces responses that are concise, relevant, and context-aware, outperforming generalized responses from systems like Gemini. These findings highlight the potential IoT-ASE to make real-time IoT data accessible and support effective, real-time decision-making.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways [45.44831696628473]
This paper presents IoTScent, an open-source forensic tool that enables IoT gateways and Home Automation platforms to perform IoT traffic capture and analysis.
IoTScent is specifically designed to operate over IEEE5.4-based traffic, which is the basis for many IoT-specific protocols such as Zigbee, 6LoWPAN and Thread.
This work provides a comprehensive description of the IoTScent tool, including a practical use case that demonstrates the use of the tool to perform device identification from Zigbee traffic.
arXiv Detail & Related papers (2023-10-05T09:10:05Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Software-Defined Edge Computing: A New Architecture Paradigm to Support
IoT Data Analysis [21.016796500957977]
We introduce in this paper features of IoT data, trends of IoT network architectures, some problems in IoT data analysis, and their solutions.
Specifically, we view that software-defined edge computing is a promising architecture to support the unique needs of IoT data analysis.
arXiv Detail & Related papers (2021-04-22T11:19:20Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z) - Personalized Federated Learning for Intelligent IoT Applications: A
Cloud-Edge based Framework [12.199870302894439]
Internet of Things (IoT) have widely penetrated in different aspects of modern life.
In this article we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications.
arXiv Detail & Related papers (2020-02-25T05:11:06Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.