Multi-Cycle-Consistent Adversarial Networks for Edge Denoising of
Computed Tomography Images
- URL: http://arxiv.org/abs/2104.12044v1
- Date: Sun, 25 Apr 2021 01:53:46 GMT
- Title: Multi-Cycle-Consistent Adversarial Networks for Edge Denoising of
Computed Tomography Images
- Authors: Xiaowe Xu, Jiawei Zhang, Jinglan Liu, Yukun Ding, Tianchen Wang,
Hailong Qiu, Haiyun Yuan, Jian Zhuang, and Wen Xie, Yuhao Dong, Qianjun Jia,
Meiping Huang, Yiyu Shi
- Abstract summary: CT image denoising tries to obtain high dose like high-quality CT images (domain X) from low dose low-quality CTimages (domain Y)
In this paper, we propose a multi-cycle-consistent adversarial network (MCCAN) that builds intermediate domains and enforces both local and global cycle-consistency for edge denoising of CT images.
- Score: 18.33958264827512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As one of the most commonly ordered imaging tests, computed tomography (CT)
scan comes with inevitable radiation exposure that increases the cancer risk to
patients. However, CT image quality is directly related to radiation dose, thus
it is desirable to obtain high-quality CT images with as little dose as
possible. CT image denoising tries to obtain high dose like high-quality CT
images (domain X) from low dose low-quality CTimages (domain Y), which can be
treated as an image-to-image translation task where the goal is to learn the
transform between a source domain X (noisy images) and a target domain Y (clean
images). In this paper, we propose a multi-cycle-consistent adversarial network
(MCCAN) that builds intermediate domains and enforces both local and global
cycle-consistency for edge denoising of CT images. The global cycle-consistency
couples all generators together to model the whole denoising process, while the
local cycle-consistency imposes effective supervision on the process between
adjacent domains. Experiments show that both local and global cycle-consistency
are important for the success of MCCAN, which outperformsCCADN in terms of
denoising quality with slightly less computation resource consumption.
Related papers
- Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
Diffusion models (DMs) excel in unconditional generation, as well as on applications such as image editing and restoration.
This work aims to unlock the full potential of consistency trajectory models (CTMs) by proposing generalized CTMs (GCTMs)
We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.
arXiv Detail & Related papers (2024-03-19T07:24:54Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
Low radiation dose may result in increased noise and artifacts, which greatly affected the clinical diagnosis.
To obtain high-quality Total-body Low-dose CT (LDCT) images, previous deep-learning-based research work has introduced various network architectures.
In this paper, we propose a novel intra-task knowledge transfer method that leverages the distilled knowledge from NDCT images.
arXiv Detail & Related papers (2021-12-01T06:46:38Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - DU-GAN: Generative Adversarial Networks with Dual-Domain U-Net Based
Discriminators for Low-Dose CT Denoising [22.351540738281265]
Deep learning techniques have been introduced to improve the image quality of LDCT images through denoising.
This paper proposes a novel method, termed DU-GAN, which leverages U-Net based discriminators in the GANs framework to learn both global and local difference between the denoised and normal-dose images.
arXiv Detail & Related papers (2021-08-24T14:37:46Z) - Probabilistic self-learning framework for Low-dose CT Denoising [1.8734449181723827]
Decreasing the exposure can reduce the dose and hence the radiation-related risk.
Supervised deep learning can be used to train a neural network to denoise the low-dose CT (LDCT)
arXiv Detail & Related papers (2020-05-30T17:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.