Noisy Quantum Computation Modeled by Quantum Walk: Universality without
Ancillas
- URL: http://arxiv.org/abs/2104.12096v2
- Date: Mon, 7 Feb 2022 18:32:54 GMT
- Title: Noisy Quantum Computation Modeled by Quantum Walk: Universality without
Ancillas
- Authors: Noa Feldman and Moshe Goldstein
- Abstract summary: We extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers.
Our scheme, the quantum walk amplitudes represent elements of the density matrix rather than the wavefunction of a pure state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The universal quantum computation model based on quantum walk by Childs has
opened the door for a new way of studying the limitations and advantages of
quantum computation, as well as for its intermediate-term simulation. In recent
years, the growing interest in noisy intermediate-scale quantum computers
(NISQ) has lead to intense efforts being directed at understanding the
computational advantages of open quantum systems. In this work, we extend the
quantum walk model to open noisy systems in order to provide such a tool for
the study of NISQ computers. Our method does not use explicit purification, and
allows to ignore the environment degrees of freedom and obtain a much more
efficient implementation (linear rather than exponential in the runtime), which
employs no ancillas hence provides direct access to the entanglement properties
of the system. In our scheme, the quantum walk amplitudes represent elements of
the density matrix rather than the wavefunction of a pure state. Despite the
non-trivial manifestation of the normalization requirement in this setting, we
model the application of general unitary gates and nonunitary channels, with an
explicit implementation protocol for channels that are commonly used in noise
models.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Simulation of open quantum systems via low-depth convex unitary evolutions [0.0]
We propose a hybrid quantum-classical approach for simulating a class of open system dynamics called random-unitary channels.
We implement simulations of open quantum systems up to dozens of qubits and with large channel ranks.
arXiv Detail & Related papers (2023-07-26T17:44:35Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
arXiv Detail & Related papers (2023-05-01T07:01:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Capturing Non-Markovian Dynamics on Near-Term Quantum Computers [0.0]
quantum algorithms for the treatment of open quantum systems (OQSs) have remained under-explored.
We present and validate a new quantum algorithm to treat non-Markovian dynamics in OQSs built on the Ensemble of Lindblad's Trajectories approach.
arXiv Detail & Related papers (2020-04-30T18:02:15Z) - Temporal Information Processing on Noisy Quantum Computers [3.4180402210147243]
We propose quantum reservoir computing that harnesses complex dissipative quantum dynamics.
Proof-of-principle experiments on remotely accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum reservoirs can tackle high-order nonlinear temporal tasks.
Our results pave the path for attractive temporal processing applications of near-term gate-model quantum computers of increasing fidelity but without quantum error correction.
arXiv Detail & Related papers (2020-01-26T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.