Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators
- URL: http://arxiv.org/abs/2305.00688v2
- Date: Mon, 13 Nov 2023 04:39:01 GMT
- Title: Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators
- Authors: Yuichiro Mori, Kouhei Nakaji, Yuichiro Matsuzaki, Shiro Kawabata
- Abstract summary: Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning with variational quantum algorithms (VQA) has been
actively investigated as a practical algorithm in the noisy intermediate-scale
quantum (NISQ) era. Recent researches reveal that the data reuploading, which
repeatedly encode classical data into quantum circuit, is necessary for
obtaining the expressive quantum machine learning model in the conventional
quantum computing architecture. However, the data reuploding tends to require
large amount of quantum resources, which motivates us to find an alternative
strategy for realizing the expressive quantum machine learning efficiently. In
this paper, we propose quantum machine learning with Kerr-nonlinear Parametric
Oscillators (KPOs), as another promising quantum computing device. The key idea
is that we use not only the ground state and first excited state but also use
higher excited states, which allows us to use a large Hilbert space even if we
have a single KPO. Our numerical simulations show that the expressibility of
our method with only one mode of the KPO is much higher than that of the
conventional method with six qubits. Our results pave the way towards resource
efficient quantum machine learning, which is essential for the practical
applications in the NISQ era.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
We develop and study three quantum machine learning applications suitable for NISQ computers.
These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model.
We propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature.
arXiv Detail & Related papers (2022-05-19T09:26:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.