System identification using Bayesian neural networks with nonparametric
noise models
- URL: http://arxiv.org/abs/2104.12119v1
- Date: Sun, 25 Apr 2021 09:49:50 GMT
- Title: System identification using Bayesian neural networks with nonparametric
noise models
- Authors: Christos Merkatas and Simo S\"arkk\"a
- Abstract summary: We propose a nonparametric approach for system identification in discrete time nonlinear random dynamical systems.
A Gibbs sampler for posterior inference is proposed and its effectiveness is illustrated in simulated and real time series.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: System identification is of special interest in science and engineering. This
article is concerned with a system identification problem arising in stochastic
dynamic systems, where the aim is to estimating the parameters of a system
along with its unknown noise processes. In particular, we propose a Bayesian
nonparametric approach for system identification in discrete time nonlinear
random dynamical systems assuming only the order of the Markov process is
known. The proposed method replaces the assumption of Gaussian distributed
error components with a highly flexible family of probability density functions
based on Bayesian nonparametric priors. Additionally, the functional form of
the system is estimated by leveraging Bayesian neural networks which also leads
to flexible uncertainty quantification. Asymptotically on the number of hidden
neurons, the proposed model converges to full nonparametric Bayesian regression
model. A Gibbs sampler for posterior inference is proposed and its
effectiveness is illustrated in simulated and real time series.
Related papers
- Dealing with Collinearity in Large-Scale Linear System Identification
Using Gaussian Regression [3.04585143845864]
We consider estimation of networks consisting of several interconnected dynamic systems.
We develop a strategy cast in a Bayesian regularization framework where any impulse response is seen as realization of a zero-mean Gaussian process.
We design a novel Markov chain Monte Carlo scheme able to reconstruct the impulse responses posterior by efficiently dealing with collinearity.
arXiv Detail & Related papers (2023-02-21T19:35:47Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
This paper presents a machine learning framework (GP-NODE) for Bayesian systems identification from partial, noisy and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
A series of numerical studies is presented to demonstrate the effectiveness of the proposed GP-NODE method including predator-prey systems, systems biology, and a 50-dimensional human motion dynamical system.
arXiv Detail & Related papers (2021-03-04T23:42:14Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
Inverse problems for chaotic systems are numerically challenging.
Small perturbations in model parameters can cause very large changes in estimated forward trajectories.
Bizarre Artificial Neural Networks can be used to simultaneously fit a model and estimate model parameter uncertainty.
arXiv Detail & Related papers (2020-05-26T20:35:02Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
This paper presents a machine learning framework for Bayesian systems identification from noisy, sparse and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
The use of sparsity-promoting priors enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics.
arXiv Detail & Related papers (2020-04-15T00:51:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.