Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing
- URL: http://arxiv.org/abs/2005.13337v1
- Date: Wed, 27 May 2020 13:06:16 GMT
- Title: Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing
- Authors: Liangzhi Li, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, Hajime
Nagahara
- Abstract summary: Vessel segmentation and artery/vein classification provide various information on potential disorders.
We adopt a UNet-based model, SeqNet, to accurately segment vessels from the background and make prediction on the vessel type.
Our experiments show that our method improves AUC to 0.98 for segmentation and the accuracy to 0.92 in classification over DRIVE dataset.
- Score: 27.825969553813092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal imaging serves as a valuable tool for diagnosis of various diseases.
However, reading retinal images is a difficult and time-consuming task even for
experienced specialists. The fundamental step towards automated retinal image
analysis is vessel segmentation and artery/vein classification, which provide
various information on potential disorders. To improve the performance of the
existing automated methods for retinal image analysis, we propose a two-step
vessel classification. We adopt a UNet-based model, SeqNet, to accurately
segment vessels from the background and make prediction on the vessel type. Our
model does segmentation and classification sequentially, which alleviates the
problem of label distribution bias and facilitates training. To further refine
classification results, we post-process them considering the structural
information among vessels to propagate highly confident prediction to
surrounding vessels. Our experiments show that our method improves AUC to 0.98
for segmentation and the accuracy to 0.92 in classification over DRIVE dataset.
Related papers
- Cross Feature Fusion of Fundus Image and Generated Lesion Map for Referable Diabetic Retinopathy Classification [1.091626241764448]
Diabetic Retinopathy (DR) is a primary cause of blindness, necessitating early detection and diagnosis.
We develop an advanced cross-learning DR classification method leveraging transfer learning and cross-attention mechanisms.
Our experiments, utilizing two public datasets, demonstrate a superior accuracy of 94.6%, surpassing current state-of-the-art methods by 4.4%.
arXiv Detail & Related papers (2024-11-06T02:23:38Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
We present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels.
Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal plexuses and 2) a suite of physics-based image augmentations.
arXiv Detail & Related papers (2022-07-22T14:22:22Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images [0.0]
The vascular structure of blood vessels is important in diagnosing retinal conditions such as glaucoma and diabetic retinopathy.
We propose an approach for segmenting retinal vessels that uses deep learning along with transfer learning.
Our approach results in greater segmentation accuracy than other approaches.
arXiv Detail & Related papers (2020-12-16T20:34:48Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.