Communication-Efficient Federated Learning with Dual-Side Low-Rank
Compression
- URL: http://arxiv.org/abs/2104.12416v1
- Date: Mon, 26 Apr 2021 09:13:31 GMT
- Title: Communication-Efficient Federated Learning with Dual-Side Low-Rank
Compression
- Authors: Zhefeng Qiao, Xianghao Yu, Jun Zhang, Khaled B. Letaief
- Abstract summary: Federated learning (FL) is a promising and powerful approach for training deep learning models without sharing the raw data of clients.
We propose a new training method, referred to as federated learning with dual-side low-rank compression (FedDLR)
We show that FedDLR outperforms the state-of-the-art solutions in terms of both the communication and efficiency.
- Score: 8.353152693578151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising and powerful approach for training
deep learning models without sharing the raw data of clients. During the
training process of FL, the central server and distributed clients need to
exchange a vast amount of model information periodically. To address the
challenge of communication-intensive training, we propose a new training
method, referred to as federated learning with dual-side low-rank compression
(FedDLR), where the deep learning model is compressed via low-rank
approximations at both the server and client sides. The proposed FedDLR not
only reduces the communication overhead during the training stage but also
directly generates a compact model to speed up the inference process. We shall
provide convergence analysis, investigate the influence of the key parameters,
and empirically show that FedDLR outperforms the state-of-the-art solutions in
terms of both the communication and computation efficiency.
Related papers
- Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices.
FL is hindered by excessive communication costs due to repeated server-client communication during training.
We propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation.
arXiv Detail & Related papers (2024-01-25T14:49:15Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - SalientGrads: Sparse Models for Communication Efficient and Data Aware
Distributed Federated Training [1.0413504599164103]
Federated learning (FL) enables the training of a model leveraging decentralized data in client sites while preserving privacy by not collecting data.
One of the significant challenges of FL is limited computation and low communication bandwidth in resource limited edge client nodes.
We propose Salient Grads, which simplifies the process of sparse training by choosing a data aware subnetwork before training.
arXiv Detail & Related papers (2023-04-15T06:46:37Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
Federated learning (FL) is a newly emerging distributed learning paradigm.
One fundamental bottleneck in FL is the heavy communication overheads between the distributed clients and the central server.
We propose FedCliP, the first communication efficient FL training framework from a macro perspective.
arXiv Detail & Related papers (2023-01-17T09:15:37Z) - Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning [18.12162136918301]
Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices.
Recent state-of-the-art pre-trained models are getting more capable but also have more parameters.
Can we find a solution to enable those strong and readily-available pre-trained models in FL to achieve excellent performance while simultaneously reducing the communication burden?
Specifically, we systemically evaluate the performance of FedPEFT across a variety of client stability, data distribution, and differential privacy settings.
arXiv Detail & Related papers (2022-10-04T16:08:54Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - On the Convergence Time of Federated Learning Over Wireless Networks
Under Imperfect CSI [28.782485580296374]
We propose a training process that takes channel statistics as a bias to minimize the convergence time under imperfect CSI.
We also examine the trade-off between number of clients involved in the training process and model accuracy as a function of different fading regimes.
arXiv Detail & Related papers (2021-04-01T08:30:45Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.