Model Guided Road Intersection Classification
- URL: http://arxiv.org/abs/2104.12417v1
- Date: Mon, 26 Apr 2021 09:15:28 GMT
- Title: Model Guided Road Intersection Classification
- Authors: Augusto Luis Ballardini and \'Alvaro Hern\'andez and Miguel \'Angel
Sotelo
- Abstract summary: This work investigates inter-section classification from RGB images using well-consolidate neural network approaches along with a method to enhance the results based on the teacher/student training paradigm.
An extensive experimental activity aimed at identifying the best input configuration and evaluating different network parameters on both the well-known KITTI dataset and the new KITTI-360 sequences shows that our method outperforms current state-of-the-art approaches on a per-frame basis and prove the effectiveness of the proposed learning scheme.
- Score: 2.9248680865344348
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding complex scenarios from in-vehicle cameras is essential for
safely operating autonomous driving systems in densely populated areas. Among
these, intersection areas are one of the most critical as they concentrate a
considerable number of traffic accidents and fatalities. Detecting and
understanding the scene configuration of these usually crowded areas is then of
extreme importance for both autonomous vehicles and modern ADAS aimed at
preventing road crashes and increasing the safety of vulnerable road users.
This work investigates inter-section classification from RGB images using
well-consolidate neural network approaches along with a method to enhance the
results based on the teacher/student training paradigm. An extensive
experimental activity aimed at identifying the best input configuration and
evaluating different network parameters on both the well-known KITTI dataset
and the new KITTI-360 sequences shows that our method outperforms current
state-of-the-art approaches on a per-frame basis and prove the effectiveness of
the proposed learning scheme.
Related papers
- LOID: Lane Occlusion Inpainting and Detection for Enhanced Autonomous Driving Systems [0.0]
We propose two innovative approaches to enhance lane detection in challenging environments.
The first approach aug-Segment improves conventional lane detection models by augmenting the training dataset of CULanes.
The second approach, LOID Lane Occlusion Inpainting and Detection, uses inpainting models to reconstruct the road environment in the occluded areas.
arXiv Detail & Related papers (2024-08-17T06:55:40Z) - A Deeply Supervised Semantic Segmentation Method Based on GAN [9.441379867578332]
The proposed model integrates a generative adversarial network (GAN) framework into the traditional semantic segmentation model.
The effectiveness of our approach is demonstrated by a significant boost in performance on the road crack dataset.
arXiv Detail & Related papers (2023-10-06T08:22:24Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
Two convolutional neural networks (CNNs) based on high-level feature descriptors are proposed to detect blind-spot collisions for heavy vehicles.
A fusion approach is proposed to integrate two pre-trained networks for extracting high level features for blind-spot vehicle detection.
The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods.
arXiv Detail & Related papers (2022-08-17T11:10:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.