Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation
- URL: http://arxiv.org/abs/2310.08595v2
- Date: Mon, 16 Oct 2023 09:34:45 GMT
- Title: Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation
- Authors: Badr Ben Elallid, Hamza El Alaoui, and Nabil Benamar
- Abstract summary: Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
- Score: 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the challenges associated with navigating complex
T-intersections in dense traffic scenarios for autonomous vehicles (AVs).
Reinforcement learning algorithms have emerged as a promising approach to
address these challenges by enabling AVs to make safe and efficient decisions
in real-time. Here, we address the problem of efficiently and safely navigating
T-intersections using a lower-cost, single-agent approach based on the Twin
Delayed Deep Deterministic Policy Gradient (TD3) reinforcement learning
algorithm. We show that our TD3-based method, when trained and tested in the
CARLA simulation platform, demonstrates stable convergence and improved safety
performance in various traffic densities. Our results reveal that the proposed
approach enables the AV to effectively navigate T-intersections, outperforming
previous methods in terms of travel delays, collision minimization, and overall
cost. This study contributes to the growing body of knowledge on reinforcement
learning applications in autonomous driving and highlights the potential of
single-agent, cost-effective methods for addressing more complex driving
scenarios and advancing reinforcement learning algorithms in the future.
Related papers
- A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors in roundabouts.
The proposed algorithm employs a deep Q-learning network to learn safe and efficient driving strategies in complex multi-vehicle roundabouts.
The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process.
arXiv Detail & Related papers (2024-08-15T16:10:25Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Model Guided Road Intersection Classification [2.9248680865344348]
This work investigates inter-section classification from RGB images using well-consolidate neural network approaches along with a method to enhance the results based on the teacher/student training paradigm.
An extensive experimental activity aimed at identifying the best input configuration and evaluating different network parameters on both the well-known KITTI dataset and the new KITTI-360 sequences shows that our method outperforms current state-of-the-art approaches on a per-frame basis and prove the effectiveness of the proposed learning scheme.
arXiv Detail & Related papers (2021-04-26T09:15:28Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.