A Deeply Supervised Semantic Segmentation Method Based on GAN
- URL: http://arxiv.org/abs/2310.04081v1
- Date: Fri, 6 Oct 2023 08:22:24 GMT
- Title: A Deeply Supervised Semantic Segmentation Method Based on GAN
- Authors: Wei Zhao and Qiyu Wei and Zeng Zeng
- Abstract summary: The proposed model integrates a generative adversarial network (GAN) framework into the traditional semantic segmentation model.
The effectiveness of our approach is demonstrated by a significant boost in performance on the road crack dataset.
- Score: 9.441379867578332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the field of intelligent transportation has witnessed rapid
advancements, driven by the increasing demand for automation and efficiency in
transportation systems. Traffic safety, one of the tasks integral to
intelligent transport systems, requires accurately identifying and locating
various road elements, such as road cracks, lanes, and traffic signs. Semantic
segmentation plays a pivotal role in achieving this task, as it enables the
partition of images into meaningful regions with accurate boundaries. In this
study, we propose an improved semantic segmentation model that combines the
strengths of adversarial learning with state-of-the-art semantic segmentation
techniques. The proposed model integrates a generative adversarial network
(GAN) framework into the traditional semantic segmentation model, enhancing the
model's performance in capturing complex and subtle features in transportation
images. The effectiveness of our approach is demonstrated by a significant
boost in performance on the road crack dataset compared to the existing
methods, \textit{i.e.,} SEGAN. This improvement can be attributed to the
synergistic effect of adversarial learning and semantic segmentation, which
leads to a more refined and accurate representation of road structures and
conditions. The enhanced model not only contributes to better detection of road
cracks but also to a wide range of applications in intelligent transportation,
such as traffic sign recognition, vehicle detection, and lane segmentation.
Related papers
- GITSR: Graph Interaction Transformer-based Scene Representation for Multi Vehicle Collaborative Decision-making [9.910230703889956]
This study focuses on efficient scene representation and the modeling of spatial interaction behaviors of traffic states.
In this study, we propose GITSR, an effective framework for Graph Interaction Transformer-based Scene Representation.
arXiv Detail & Related papers (2024-11-03T15:27:26Z) - TSCLIP: Robust CLIP Fine-Tuning for Worldwide Cross-Regional Traffic Sign Recognition [8.890563785528842]
Current methods for traffic sign recognition rely on traditional deep learning models.
We propose TSCLIP, a robust fine-tuning approach with the contrastive language-image pre-training model.
To the best knowledge of authors, TSCLIP is the first contrastive language-image model used for the worldwide cross-regional traffic sign recognition task.
arXiv Detail & Related papers (2024-09-23T14:51:26Z) - Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
We propose a cross-domain few-shot in-context learning method based on the MLLM for enhancing traffic sign recognition.
By using description texts, our method reduces the cross-domain differences between template and real traffic signs.
Our approach requires only simple and uniform textual indications, without the need for large-scale traffic sign images and labels.
arXiv Detail & Related papers (2024-07-08T10:51:03Z) - Homography Guided Temporal Fusion for Road Line and Marking Segmentation [73.47092021519245]
Road lines and markings are frequently occluded in the presence of moving vehicles, shadow, and glare.
We propose a Homography Guided Fusion (HomoFusion) module to exploit temporally-adjacent video frames for complementary cues.
We show that exploiting available camera intrinsic data and ground plane assumption for cross-frame correspondence can lead to a light-weight network with significantly improved performances in speed and accuracy.
arXiv Detail & Related papers (2024-04-11T10:26:40Z) - Semantic-Enhanced Representation Learning for Road Networks with Temporal Dynamics [33.940044533340235]
We introduce a novel framework called Toast for learning general-purpose representations of road networks, along with its advanced counterpart DyToast.
Specifically, we propose to encode two pivotal semantic characteristics intrinsic to road networks: traffic patterns and traveling semantics.
Our proposed framework consistently outperforms the state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2024-03-18T05:59:56Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Model Guided Road Intersection Classification [2.9248680865344348]
This work investigates inter-section classification from RGB images using well-consolidate neural network approaches along with a method to enhance the results based on the teacher/student training paradigm.
An extensive experimental activity aimed at identifying the best input configuration and evaluating different network parameters on both the well-known KITTI dataset and the new KITTI-360 sequences shows that our method outperforms current state-of-the-art approaches on a per-frame basis and prove the effectiveness of the proposed learning scheme.
arXiv Detail & Related papers (2021-04-26T09:15:28Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
One of the most critical pieces of the self-driving puzzle is the task of predicting future movement of surrounding traffic actors.
Methods based on top-down sceneization on one side and Generative Adrial Networks (GANs) on the other have shown to be particularly successful.
In this paper we build upon these two directions and propose aversa-based conditional GAN architecture.
We evaluate the proposed method on a large-scale, real-world data set, showing that it outperforms state-of-the-art GAN-based baselines.
arXiv Detail & Related papers (2020-04-14T00:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.