A Framework for Ethical AI at the United Nations
- URL: http://arxiv.org/abs/2104.12547v1
- Date: Fri, 9 Apr 2021 23:44:37 GMT
- Title: A Framework for Ethical AI at the United Nations
- Authors: Lambert Hogenhout
- Abstract summary: This paper aims to provide an overview of the ethical concerns in artificial intelligence (AI) and the framework that is needed to mitigate those risks.
It suggests a practical path to ensure the development and use of AI at the United Nations (UN) aligns with our ethical values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to provide an overview of the ethical concerns in artificial
intelligence (AI) and the framework that is needed to mitigate those risks, and
to suggest a practical path to ensure the development and use of AI at the
United Nations (UN) aligns with our ethical values. The overview discusses how
AI is an increasingly powerful tool with potential for good, albeit one with a
high risk of negative side-effects that go against fundamental human rights and
UN values. It explains the need for ethical principles for AI aligned with
principles for data governance, as data and AI are tightly interwoven. It
explores different ethical frameworks that exist and tools such as assessment
lists. It recommends that the UN develop a framework consisting of ethical
principles, architectural standards, assessment methods, tools and
methodologies, and a policy to govern the implementation and adherence to this
framework, accompanied by an education program for staff.
Related papers
- Where Assessment Validation and Responsible AI Meet [0.0876953078294908]
We propose a unified assessment framework that considers classical test validation theory and assessment-specific and domain-agnostic RAI principles and practice.
The framework addresses responsible AI use for assessment that supports validity arguments, alignment with AI ethics to maintain human values and oversight, and broader social responsibility associated with AI use.
arXiv Detail & Related papers (2024-11-04T20:20:29Z) - Ethical AI Governance: Methods for Evaluating Trustworthy AI [0.552480439325792]
Trustworthy Artificial Intelligence (TAI) integrates ethics that align with human values.
TAI evaluation aims to ensure ethical standards and safety in AI development and usage.
arXiv Detail & Related papers (2024-08-28T09:25:50Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
The principles-based ethics assurance argument pattern is one proposal in the AI ethics landscape.
This paper presents the interim findings of a case study applying this ethics assurance framework to the use of Dora, an AI-based telemedicine system.
arXiv Detail & Related papers (2023-05-23T16:04:59Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Achieving a Data-driven Risk Assessment Methodology for Ethical AI [3.523208537466128]
We show that a multidisciplinary research approach is the foundation of a pragmatic definition of ethical and societal risks faced by organizations using AI.
We propose a novel data-driven risk assessment methodology, entitled DRESS-eAI.
arXiv Detail & Related papers (2021-11-29T12:55:33Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.