Achieving a Data-driven Risk Assessment Methodology for Ethical AI
- URL: http://arxiv.org/abs/2112.01282v1
- Date: Mon, 29 Nov 2021 12:55:33 GMT
- Title: Achieving a Data-driven Risk Assessment Methodology for Ethical AI
- Authors: Anna Fell\"ander, Jonathan Rebane, Stefan Larsson, Mattias Wiggberg
and Fredrik Heintz
- Abstract summary: We show that a multidisciplinary research approach is the foundation of a pragmatic definition of ethical and societal risks faced by organizations using AI.
We propose a novel data-driven risk assessment methodology, entitled DRESS-eAI.
- Score: 3.523208537466128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The AI landscape demands a broad set of legal, ethical, and societal
considerations to be accounted for in order to develop ethical AI (eAI)
solutions which sustain human values and rights. Currently, a variety of
guidelines and a handful of niche tools exist to account for and tackle
individual challenges. However, it is also well established that many
organizations face practical challenges in navigating these considerations from
a risk management perspective. Therefore, new methodologies are needed to
provide a well-vetted and real-world applicable structure and path through the
checks and balances needed for ethically assessing and guiding the development
of AI. In this paper we show that a multidisciplinary research approach,
spanning cross-sectional viewpoints, is the foundation of a pragmatic
definition of ethical and societal risks faced by organizations using AI.
Equally important is the findings of cross-structural governance for
implementing eAI successfully. Based on evidence acquired from our
multidisciplinary research investigation, we propose a novel data-driven risk
assessment methodology, entitled DRESS-eAI. In addition, through the evaluation
of our methodological implementation, we demonstrate its state-of-the-art
relevance as a tool for sustaining human values in the data-driven AI era.
Related papers
- An evidence-based methodology for human rights impact assessment (HRIA) in the development of AI data-intensive systems [49.1574468325115]
We show that human rights already underpin the decisions in the field of data use.
This work presents a methodology and a model for a Human Rights Impact Assessment (HRIA)
The proposed methodology is tested in concrete case-studies to prove its feasibility and effectiveness.
arXiv Detail & Related papers (2024-07-30T16:27:52Z) - Towards an Ethical and Inclusive Implementation of Artificial Intelligence in Organizations: A Multidimensional Framework [0.0]
This article analyzes the impact of artificial intelligence on contemporary society and the importance of adopting an ethical approach to its development and implementation within organizations.
Various actors, such as governments, academics, and civil society, can play a role in shaping the development of AI aligned with human and social values.
arXiv Detail & Related papers (2024-05-02T19:43:51Z) - Hacia una implementación ética e inclusiva de la Inteligencia Artificial en las organizaciones: un marco multidimensional [0.0]
The article analyzes the impact of artificial intelligence on contemporary society and the importance of adopting an ethical approach to its development and implementation within organizations.
Various actors, such as governments, academics and civil society, can play a role in shaping the development of AI aligned with human and social values.
arXiv Detail & Related papers (2024-04-30T22:11:05Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Beyond Fairness Metrics: Roadblocks and Challenges for Ethical AI in
Practice [2.1485350418225244]
We review practical challenges in building and deploying ethical AI at the scale of contemporary industrial and societal uses.
We argue that a holistic consideration of ethics in the development and deployment of AI systems is necessary for building ethical AI in practice.
arXiv Detail & Related papers (2021-08-11T18:33:17Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - A Framework for Ethical AI at the United Nations [0.0]
This paper aims to provide an overview of the ethical concerns in artificial intelligence (AI) and the framework that is needed to mitigate those risks.
It suggests a practical path to ensure the development and use of AI at the United Nations (UN) aligns with our ethical values.
arXiv Detail & Related papers (2021-04-09T23:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.