A realistic model for completing Quantum Mechanics
- URL: http://arxiv.org/abs/2104.12701v5
- Date: Fri, 12 Jul 2024 08:59:13 GMT
- Title: A realistic model for completing Quantum Mechanics
- Authors: M. Baldo,
- Abstract summary: In Copenhagen the physical objects and the experimental results can be described only in a macroscopic language.
The measurement problem is at the center of these difficulties, mainly because it requires the introduction of the reduction process of the wave function.
We build up and propose a model which is able to solve the measurement problem and all the other difficulties which, in a way or in another, are related to it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the well known Copenhagen interpretation of Quantum mechanics, advocated by N. Bohr, the physical objects and the experimental results can be described only in a macroscopic language, leaving any possible microscopic description as unspeakable. This point of view has been deepened by C. Rovelli in the relational interpretation of Quantum mechanics. Most of the alternative interpretations, which try a detailed microscopic description of physical phenomena and of their evolution, have in common the explicit introduction of the wave function as the basic element of the theory. These interpretations require the notion of quantum state as the fundamental concept of the theory, which is the typical unspeakable physical element according to the Copenhagen interpretation. The two basic physical entities are intimately bound together by the integrity of the wave function. These interpretations are usually indicated as realistic. It is well known that the use of the wave function and its time evolution in the description of the physical processes leads unavoidably to some difficulties or so-called paradoxes. The measurement problem is at the center of these difficulties, mainly because it requires the introduction of the reduction process of the wave function, which is not included explicitly within the mathematical formalism of Quantum Mechanics. In this paper we build up and propose a model which goes beyond the standard formalism and which is able to solve the measurement problem and all the other difficulties which, in a way or in another, are related to it.
Related papers
- Does quantum information require additional structure? [0.0]
We introduce the correspondence principle between physical reality and mathematical models.
We consider the status of quantum information in the standard quantum model.
We present the Chyli'nski model as an example of quantum relational space.
arXiv Detail & Related papers (2024-08-20T20:39:20Z) - An ontological description for relativistic, massive bosons [0.0]
Locality holds for the quantum theory, and seems to be fully obeyed also by the classical treatment.
We do discuss extensively the distinction between the quantum treatment and the classical one, even though they produce exactly the same equations mathematically.
It is suggested to apply this theory for real time quantum model simulations.
arXiv Detail & Related papers (2023-06-16T14:53:02Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Conceptual variables, quantum theory, and statistical inference theory [0.0]
A different approach towards quantum theory is proposed in this paper.
The basis is to be conceptual variables, physical variables that may be accessible or inaccessible, i.e., it may be possible or impossible to assign numerical values to them.
arXiv Detail & Related papers (2020-05-15T08:08:55Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z) - The (Quantum) Measurement Problem in Classical Mechanics [0.0]
We show why this is not an "obvious" nor "self evident" problem for the theory of quanta.
We discuss a representational realist account of both physical 'theories' and'measurement'
We show how through these same set of presuppositions it is easy to derive a completely analogous paradox for the case of classical mechanics.
arXiv Detail & Related papers (2020-01-01T17:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.