論文の概要: DABT: A Dependency-aware Bug Triaging Method
- arxiv url: http://arxiv.org/abs/2104.12744v1
- Date: Mon, 26 Apr 2021 17:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 14:20:51.456533
- Title: DABT: A Dependency-aware Bug Triaging Method
- Title(参考訳): DABT: 依存性を意識したバグトリアージ手法
- Authors: Hadi Jahanshahi, Kritika Chhabra, Mucahit Cevik, Ay\c{s}e Ba\c{s}ar
- Abstract要約: 自然言語処理と整数を利用して,適切な開発者にバグを割り当てる,Dependency-aware Bug Triaging(DABT)と呼ばれるバグトリアージ手法を提案する。
その結果,DABTは過度なバグを最大12%まで減らすことができることがわかった。
また、バグの修正時間の平均を半減します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In software engineering practice, fixing a bug promptly reduces the
associated costs. On the other hand, the manual bug fixing process can be
time-consuming, cumbersome, and error-prone. In this work, we introduce a bug
triaging method, called Dependency-aware Bug Triaging (DABT), which leverages
natural language processing and integer programming to assign bugs to
appropriate developers. Unlike previous works that mainly focus on one aspect
of the bug reports, DABT considers the textual information, cost associated
with each bug, and dependency among them. Therefore, this comprehensive
formulation covers the most important aspect of the previous works while
considering the blocking effect of the bugs. We report the performance of the
algorithm on three open-source software systems, i.e., EclipseJDT, LibreOffice,
and Mozilla. Our result shows that DABT is able to reduce the number of overdue
bugs up to 12\%. It also decreases the average fixing time of the bugs by half.
Moreover, it reduces the complexity of the bug dependency graph by prioritizing
blocking bugs.
- Abstract(参考訳): ソフトウェアエンジニアリングの実践では、バグの修正はすぐに関連するコストを削減します。
一方、手動のバグ修正プロセスは、時間がかかり、面倒で、エラーが発生しやすい。
本研究では、自然言語処理と整数プログラミングを利用してバグを適切な開発者に割り当てるDABT(Dependency-aware Bug Triaging)と呼ばれるバグトリアージ手法を提案する。
バグレポートの1つの側面に主にフォーカスする以前の作業とは異なり、DABTは、テキスト情報、各バグに関連するコスト、およびそれらの依存関係について検討している。
したがって、この包括的定式化は、バグのブロック効果を考慮しつつ、以前の作業の最も重要な側面をカバーしている。
本稿では,EclipseJDT, LibreOffice, Mozillaの3つのオープンソースソフトウェアシステムにおけるアルゴリズムの性能について報告する。
以上の結果から,DABT はオーバーデューバグを 12 % まで減らすことができることがわかった。
また、バグの修正時間の平均を半減します。
さらに、ブロッキングバグを優先順位付けすることで、バグ依存グラフの複雑さを低減する。
関連論文リスト
- Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests [44.13331329339185]
我々は,スタックトレースデータをテストカバレッジと統合し,障害局所化を強化する新しいアプローチであるSBESTを導入する。
提案手法では,平均精度(MAP)が32.22%向上し,平均相互ランク(MRR)が17.43%向上した。
論文 参考訳(メタデータ) (2024-05-01T15:15:52Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - PreciseBugCollector: Extensible, Executable and Precise Bug-fix
Collection [8.79879909193717]
正確な多言語バグ収集手法であるPreciseBugCollectorを紹介する。
外部バグリポジトリでリポジトリをマップしてバグタイプ情報をトレースするバグトラッカと、プロジェクト固有のバグを生成するバグインジェクタの2つの新しいコンポーネントに基づいている。
現在、PreciseBugCollectorは2968のオープンソースプロジェクトから抽出された1057818のバグを含んでいる。
論文 参考訳(メタデータ) (2023-09-12T13:47:44Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
新たな検索型パッチ生成フレームワーク(RAP-Gen)を提案する。
RAP-Gen 以前のバグ修正ペアのリストから取得した関連する修正パターンを明示的に活用する。
RAP-GenをJavaScriptのTFixベンチマークとJavaのCode RefinementとDefects4Jベンチマークの2つのプログラミング言語で評価する。
論文 参考訳(メタデータ) (2023-09-12T08:52:56Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z) - ADPTriage: Approximate Dynamic Programming for Bug Triage [0.0]
オンラインバグトリアージタスクのためのマルコフ決定プロセス(MDP)モデルを開発した。
私たちはADPTriageと呼ばれるADPベースのバグトリアージソリューションを提供しています。
以上の結果から, 代入精度と固定時間の観点から, ミオピックアプローチよりも有意な改善が見られた。
論文 参考訳(メタデータ) (2022-11-02T04:42:21Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - S-DABT: Schedule and Dependency-Aware Bug Triage in Open-Source Bug
Tracking Systems [0.0]
手動のバグ修正のスケジューリングは、時間がかかり、面倒で、エラーを起こしやすい。
そこで我々は,S-DABT(Schedule and Dependency-aware Bug Triage)を提案する。
論文 参考訳(メタデータ) (2022-04-12T17:36:43Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
本稿では,バグトリアージ問題を解決するための新しいディープラーニングモデルを提案する。
モデルは、注目された双方向のリカレントニューラルネットワークと畳み込みニューラルネットワークに基づいている。
ランキングの質を向上させるために,バージョン管理システムのアノテーションから追加情報を利用することを提案する。
論文 参考訳(メタデータ) (2022-01-14T00:16:57Z) - Advaita: Bug Duplicity Detection System [1.9624064951902522]
重複バグ率(重複バグの%)は、製品の成熟度、コードのサイズ、プロジェクトに取り組んでいるエンジニアの数に基づいて、1桁(1~9%)から2桁(40%)の範囲にある。
重複の検出は、2つのバグが同じ意味を持つかどうかを識別する。
このアプローチでは、基本的なテキスト統計的特徴、意味的特徴、文脈的特徴など、複数の機能セットを考慮に入れている。
論文 参考訳(メタデータ) (2020-01-24T04:48:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。