論文の概要: Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests
- arxiv url: http://arxiv.org/abs/2405.00565v1
- Date: Wed, 1 May 2024 15:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:27:48.890470
- Title: Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests
- Title(参考訳): 障害試験におけるスペクトルに基づく断層定位のためのスタックトレースの活用
- Authors: Lorena Barreto Simedo Pacheco, An Ran Chen, Jinqiu Yang, Tse-Hsun, Chen,
- Abstract要約: 我々は,スタックトレースデータをテストカバレッジと統合し,障害局所化を強化する新しいアプローチであるSBESTを導入する。
提案手法では,平均精度(MAP)が32.22%向上し,平均相互ランク(MRR)が17.43%向上した。
- 参考スコア(独自算出の注目度): 44.13331329339185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bug fixing is a crucial task in software maintenance to hold user trust. Although various automated fault localization techniques exist, they often require specific conditions to be effective. For example, Spectrum-Based Fault Localization (SBFL) techniques need at least one failing test to identify bugs, which may not always be available. Bug reports, particularly those with stack traces, provide detailed information on system execution failures and are invaluable for developers. This study focuses on utilizing stack traces from crash reports as fault-triggering tests for SBFL. Our findings indicate that only 3.33% of bugs have fault-triggering tests, limiting traditional SBFL efficiency. However, 98.3% of bugfix intentions align directly with exceptions in stack traces, and 78.3% of buggy methods are reachable within an average of 0.34 method calls, proving stack traces as a reliable source for locating bugs. We introduce a new approach, SBEST, that integrates stack trace data with test coverage to enhance fault localization. Our approach shows a significant improvement, increasing Mean Average Precision (MAP) by 32.22% and Mean Reciprocal Rank (MRR) by 17.43% over traditional stack trace ranking methods.
- Abstract(参考訳): バグ修正は、ユーザの信頼を維持するために、ソフトウェアのメンテナンスにおいて重要なタスクである。
様々な自動故障局所化技術が存在するが、有効にするためには特定の条件を必要とすることが多い。
例えば、スペクトラムベースのフォールトローカライゼーション(SBFL)技術では、バグを特定するために少なくとも1つのフェールテストが必要です。
バグレポート、特にスタックトレースを持つものは、システム実行障害に関する詳細な情報を提供しており、開発者にとっては重要ではない。
本研究は,SBFLの耐故障試験として,事故報告からのスタックトレースを活用することに焦点を当てた。
以上の結果から,従来のSBFLの効率を損なう原因は3.33%に過ぎなかった。
しかし、98.3%のバグ修正意図はスタックトレースの例外と直接一致しており、78.3%のバグ修正手法は平均0.34のメソッドコールで到達可能であり、バグを見つけるための信頼できる情報源としてスタックトレースを証明している。
我々は,スタックトレースデータをテストカバレッジと統合し,障害局所化を強化する新しいアプローチであるSBESTを導入する。
提案手法では,平均精度(MAP)が32.22%向上し,平均相互ランク(MRR)が17.43%向上した。
関連論文リスト
- STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay [76.06127233986663]
テスト時間適応(TTA)は、トレーニングデータとテストデータの間の分散シフトに、未ラベルのデータのみを用いて対処することを目的としている。
本稿では,サンプル認識とオフリエ拒絶の両方を行う問題に注意を払っている。
本稿では,STAble Memory rePlay (STAMP) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T16:25:41Z) - GPT-HateCheck: Can LLMs Write Better Functional Tests for Hate Speech Detection? [50.53312866647302]
HateCheckは、合成データに対してきめ細かいモデル機能をテストするスイートである。
GPT-HateCheckは,スクラッチからより多彩で現実的な機能テストを生成するフレームワークである。
クラウドソースのアノテーションは、生成されたテストケースが高品質であることを示しています。
論文 参考訳(メタデータ) (2024-02-23T10:02:01Z) - SkipAnalyzer: A Tool for Static Code Analysis with Large Language Models [12.21559364043576]
SkipAnalyzerは、静的コード解析のための大規模言語モデル(LLM)ベースのツールである。
概念実証として、SkipAnalyzerはChatGPT上に構築されている。
論文 参考訳(メタデータ) (2023-10-27T23:17:42Z) - Improving Spectrum-Based Localization of Multiple Faults by Iterative
Test Suite Reduction [0.30458514384586394]
本稿では,複数の断層が存在する場合の基準距離の局所化を改善する新しいSBFL拡張であるFLITSRを提案する。
3つのスペクトルタイプすべてに対して、最高のベースメトリックよりも30%-90%の、異なる断層レベルで平均的な無駄な労力が大幅に削減される。
メソッドレベルの実障害に対しては、FLITSRは、最先端の学習ベースの障害ローカライザであるGRACEを著しく上回っている。
論文 参考訳(メタデータ) (2023-06-16T15:00:40Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - Large Language Models are Few-shot Testers: Exploring LLM-based General
Bug Reproduction [14.444294152595429]
問題によりオープンソースリポジトリに追加されたテストの数は、対応するプロジェクトテストスイートサイズの約28%であった。
本稿では,Large Language Models (LLMs) を用いたLIBROを提案する。
LIBROの評価は、広く研究されているDefects4Jベンチマークにおいて、全ての研究ケースの33%で障害再現テストケースを生成することができることを示している。
論文 参考訳(メタデータ) (2022-09-23T10:50:47Z) - Infrared: A Meta Bug Detector [10.541969253100815]
我々はメタバグ検出と呼ばれる新しいアプローチを提案し、既存の学習ベースのバグ検出よりも3つの重要な利点を提供している。
我々のメタバグ検出装置(MBD)は,ヌルポインタの参照,配列インデックスのアウト・オブ・バウンド,ファイルハンドルのリーク,さらには並列プログラムにおけるデータ競合など,さまざまなバグの発見に有効であることを示す。
論文 参考訳(メタデータ) (2022-09-18T09:08:51Z) - An Empirical Study on Bug Severity Estimation using Source Code Metrics and Static Analysis [0.8621608193534838]
我々は、19のJavaオープンソースプロジェクトと異なる重度ラベルを持つ3,358のバグギーメソッドを調査した。
結果は、コードメトリクスがバグの多いコードを予測するのに有用であることを示しているが、バグの深刻度レベルを見積もることはできない。
当社の分類では、セキュリティバグがほとんどのケースで高い重大性を持っているのに対して、エッジ/バウンダリ障害は低い重大性を持っていることが示されています。
論文 参考訳(メタデータ) (2022-06-26T17:07:23Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
本稿では、深層学習に基づくスタックトレースの類似性を計算する最初のアプローチであるS3Mを紹介します。
BiLSTMエンコーダと、類似性を計算するための完全接続型分類器をベースとしている。
私たちの実験は、オープンソースデータとプライベートなJetBrainsデータセットの両方において、最先端のアプローチの優位性を示しています。
論文 参考訳(メタデータ) (2021-03-18T21:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。