A locally deterministic, detector-based model of quantum measurement
- URL: http://arxiv.org/abs/2104.12801v1
- Date: Mon, 26 Apr 2021 18:01:10 GMT
- Title: A locally deterministic, detector-based model of quantum measurement
- Authors: Brian R. La Cour
- Abstract summary: This paper describes a simple, causally deterministic model of quantum measurement based on an amplitude threshold detection scheme.
Surprisingly, it is found to reproduce many phenomena normally thought to be uniquely quantum in nature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a simple, causally deterministic model of quantum
measurement based on an amplitude threshold detection scheme. Surprisingly, it
is found to reproduce many phenomena normally thought to be uniquely quantum in
nature. To model an $N$-dimensional pure state, the model uses $N$ complex
random variables given by a scaled version of the wave vector with additive
complex noise. Measurements are defined by threshold crossings of the
individual components, conditioned on single-component threshold crossings. The
resulting detection probabilities match or approximate those predicted by
quantum mechanics according to the Born rule. Nevertheless, quantum phenomena
such as entanglement, contextuality, and violations of Bell's inequality under
local measurements are all shown to be exhibited by the model, thereby
demonstrating that such phenomena are not without classical analogs.
Related papers
- Deriving the Born Rule from a model of the quantum measurement process [0.0]
The quantum mechanics postulate called the Born Rule attributes a probabilistic meaning to a wave function.
This paper derives the Born from other quantum principles along with a model of the measurement process.
arXiv Detail & Related papers (2024-08-08T12:10:26Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Emergence of the Born rule in quantum optics [0.0]
The Born rule provides a fundamental connection between theory and observation in quantum mechanics, yet its origin remains a mystery.
We consider this problem using only classical physics and the assumption of a quantum electrodynamic vacuum that is real rather than virtual.
The connection to observation is made via classical intensity threshold detectors that are used as a simple, deterministic model of photon detection.
arXiv Detail & Related papers (2020-04-19T02:24:22Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.