Emergence of the Born rule in quantum optics
- URL: http://arxiv.org/abs/2004.08749v3
- Date: Fri, 16 Oct 2020 18:21:56 GMT
- Title: Emergence of the Born rule in quantum optics
- Authors: Brian R. La Cour and Morgan C. Williamson
- Abstract summary: The Born rule provides a fundamental connection between theory and observation in quantum mechanics, yet its origin remains a mystery.
We consider this problem using only classical physics and the assumption of a quantum electrodynamic vacuum that is real rather than virtual.
The connection to observation is made via classical intensity threshold detectors that are used as a simple, deterministic model of photon detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Born rule provides a fundamental connection between theory and
observation in quantum mechanics, yet its origin remains a mystery. We consider
this problem within the context of quantum optics using only classical physics
and the assumption of a quantum electrodynamic vacuum that is real rather than
virtual. The connection to observation is made via classical intensity
threshold detectors that are used as a simple, deterministic model of photon
detection. By following standard experimental conventions of data analysis on
discrete detection events, we show that this model is capable of reproducing
several observed phenomena thought to be uniquely quantum in nature, thus
providing greater elucidation of the quantum-classical boundary.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - The Quantum Gaussian-Schell Model: A Link Between Classical and Quantum Optics [0.0]
We show the extraction of the constituent multiphoton quantum systems of a partially coherent light field.
Our findings establish a fundamental bridge between the classical and quantum worlds.
arXiv Detail & Related papers (2024-03-14T21:00:05Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Multicopy observables for the detection of optically nonclassical states [0.0]
We design optical nonclassicality observables that act on several replicas of a quantum state.
These observables are used to construct a family of physically implementable schemes.
arXiv Detail & Related papers (2022-05-24T12:51:42Z) - Non-normal Hamiltonian dynamics in quantum systems and its realization
on quantum computers [0.0]
We study the dynamics driven by the non-normal matrix (Hamiltonian) realized as a continuous quantum trajectory of the Lindblad master equation in open quantum systems.
We formulate the transient suppression of the decay rate of the norm due to the pseudospectral behavior and derive a non-Hermitian/non-normal analog of the time-energy uncertainty relation.
arXiv Detail & Related papers (2021-07-18T13:29:28Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.