Quantum simulating the electron transport in quantum cascade laser
structures
- URL: http://arxiv.org/abs/2104.12843v1
- Date: Mon, 26 Apr 2021 19:40:07 GMT
- Title: Quantum simulating the electron transport in quantum cascade laser
structures
- Authors: Andrea Trombettoni, Francesco Scazza, Francesco Minardi, Giacomo
Roati, Francesco Cappelli, Luigi Consolino, Augusto Smerzi, Paolo De Natale
- Abstract summary: We show the existence of optimal relationships between the model parameters, maximizing the particle current, the population inversion (or their product) and the stimulated emission rate.
This substantiates the concept of emulating the QCL operation mechanisms in cold-atom optical lattice simulators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose to use ultracold fermionic atoms in one-dimensional optical
lattices to quantum simulate the electronic transport in quantum cascade laser
(QCL) structures. The competition between the coherent tunneling among (and
within) the wells and the dissipative decay at the basis of lasing is
discussed. In order to validate the proposed simulation scheme, we
quantitatively address such competition in a simplified one-dimensional model.
We show the existence of optimal relationships between the model parameters,
maximizing the particle current, the population inversion (or their product),
and the stimulated emission rate. This substantiates the concept of emulating
the QCL operation mechanisms in cold-atom optical lattice simulators, laying
the groundwork for addressing open questions, such as the impact of
electron-electron scattering and the origin of transport-induced noise, in the
design of new-generation QCLs.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Quantum Algorithms for Simulating Nuclear Effective Field Theories [40.83664249192338]
We use state-of-the-art Hamiltonian-simulation methods to estimate the qubit and gate costs to simulate low-energy effective field theories (EFTs) of nuclear physics.
We demonstrate how symmetries of the low-energy nuclear Hamiltonians can be utilized to obtain tighter error bounds on the simulation algorithm.
arXiv Detail & Related papers (2023-12-08T20:09:28Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Quantum chemistry simulation of ground- and excited-state properties of
the sulfonium cation on a superconducting quantum processor [0.0]
This study is an important step toward the computational description of photo-dissociation on near-term quantum devices.
It can be generalized to other photodissociation processes and naturally extended in different ways to achieve more realistic simulations.
arXiv Detail & Related papers (2022-08-04T02:45:01Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Scattering in Terms of Bohmian Conditional Wave Functions for Scenarios
with Non-Commuting Energy and Momentum Operators [0.0]
We show that Bohmian conditional wave functions (BCWF) allow a rigorous discussion of the dynamics of electrons inside open quantum systems.
We discuss the practical application of the method for modeling light-matter interaction phenomena in a resonant tunneling device.
arXiv Detail & Related papers (2022-02-03T13:07:43Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Variational Quantum Simulation for Periodic Materials [0.0]
We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures.
Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.
arXiv Detail & Related papers (2020-08-21T14:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.