論文の概要: Document Structure aware Relational Graph Convolutional Networks for
Ontology Population
- arxiv url: http://arxiv.org/abs/2104.12950v1
- Date: Tue, 27 Apr 2021 02:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 13:38:53.626591
- Title: Document Structure aware Relational Graph Convolutional Networks for
Ontology Population
- Title(参考訳): オントロジー集団のための関係グラフ畳み込みネットワークの文書構造認識
- Authors: Abhay M Shalghar, Ayush Kumar, Balaji Ganesan, Aswin Kannan, Shobha G
- Abstract要約: 文書コーパスにおける概念間の存在論的関係の学習における文書構造の役割を考察する。
超音速発見と説明可能性から着想を得た本手法は,RCNモデルのスタンドアロンモデルよりも約15ポイント精度が高い。
- 参考スコア(独自算出の注目度): 1.076210145983805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ontologies comprising of concepts, their attributes, and relationships, form
the quintessential backbone of many knowledge based AI systems. These systems
manifest in the form of question-answering or dialogue in number of business
analytics and master data management applications. While there have been
efforts towards populating domain specific ontologies, we examine the role of
document structure in learning ontological relationships between concepts in
any document corpus. Inspired by ideas from hypernym discovery and
explainability, our method performs about 15 points more accurate than a
stand-alone R-GCN model for this task.
- Abstract(参考訳): 概念、属性、関係からなるオントロジーは、多くの知識ベースのaiシステムの基本的なバックボーンを形成する。
これらのシステムは、ビジネス分析およびマスターデータ管理アプリケーションの数における質問応答や対話の形で表される。
ドメイン特有なオントロジーの投入に向けた取り組みは行われてきたが、文書コーパスにおける概念間の存在論的関係を学ぶ際に文書構造が果たす役割について検討する。
ハイパニム発見と説明可能性から着想を得た本手法は, スタンドアロンのR-GCNモデルよりも15ポイント精度が高い。
関連論文リスト
- Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Topology and geometry of data manifold in deep learning [0.0]
本稿では,ニューラルネットワークの学習過程の幾何学的および位相的視点について述べる。
我々は、さまざまなデータセットと畳み込みニューラルネットワークアーキテクチャの異なる構成に関する幅広い実験を提示する。
我々の研究は、コンピュータビジョンの例を通して、説明可能な、解釈可能なAIの重要な分野の発展に寄与している。
論文 参考訳(メタデータ) (2022-04-19T02:57:47Z) - Learning Description Logic Ontologies. Five Approaches. Where Do They
Stand? [14.650545418986058]
我々は、記述論理(DL)の作成のために提案された機械学習とデータマイニングのアプローチを強調した。
これらは関連ルールマイニング、形式的概念分析、帰納的論理プログラミング、計算学習理論、ニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2021-04-02T18:36:45Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - Expressiveness and machine processability of Knowledge Organization
Systems (KOS): An analysis of concepts and relations [0.0]
各知識組織システムの表現性と機械処理性の両方の可能性は、その構造規則によって広範囲に規制されている。
オントロジーは多種多様な関係を明示的に定義し、その性質上機械処理可能である。
論文 参考訳(メタデータ) (2020-03-11T12:35:52Z) - A Neural Architecture for Person Ontology population [4.141401146586342]
ニューラルモデルを用いて非構造化データから人オントロジーグラフを自動的に収集するシステムを提案する。
これらのタスクのための新しいデータセットを導入し、その結果について議論する。
論文 参考訳(メタデータ) (2020-01-22T13:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。