論文の概要: Online Multi-modal Root Cause Analysis
- arxiv url: http://arxiv.org/abs/2410.10021v1
- Date: Sun, 13 Oct 2024 21:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:33:49.638131
- Title: Online Multi-modal Root Cause Analysis
- Title(参考訳): オンラインマルチモーダルルート原因解析
- Authors: Lecheng Zheng, Zhengzhang Chen, Haifeng Chen, Jingrui He,
- Abstract要約: ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
- 参考スコア(独自算出の注目度): 61.94987309148539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems. Traditional data-driven RCA methods are typically limited to offline applications due to high computational demands, and existing online RCA methods handle only single-modal data, overlooking complex interactions in multi-modal systems. In this paper, we introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization. OCEAN employs a dilated convolutional neural network to capture long-term temporal dependencies and graph neural networks to learn causal relationships among system entities and key performance indicators. We further design a multi-factor attention mechanism to analyze and reassess the relationships among different metrics and log indicators/attributes for enhanced online causal graph learning. Additionally, a contrastive mutual information maximization-based graph fusion module is developed to effectively model the relationships across various modalities. Extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of our proposed method.
- Abstract(参考訳): ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
従来のデータ駆動型RCA法は高い計算要求のためにオフラインアプリケーションに限られており、既存のオンラインRCA法は単一のモーダルデータのみを処理し、マルチモーダルシステムの複雑な相互作用を見渡す。
本稿では,根本原因の局在化のためのオンライン多モード因果構造学習手法であるOCEANを紹介する。
OCEANは拡張畳み込みニューラルネットワークを使用して、長期の時間的依存関係をキャプチャし、グラフニューラルネットワークを使用して、システムエンティティと重要なパフォーマンス指標間の因果関係を学習する。
さらに、オンライン因果グラフ学習の強化のために、異なるメトリクスとログインジケータ/属性間の関係を分析し、再評価する多要素アテンション機構を設計する。
さらに、相互情報最大化に基づくグラフ融合モジュールを開発し、様々なモーダル間の関係を効果的にモデル化する。
実世界の3つのデータセットに対する大規模な実験により,提案手法の有効性と有効性を示した。
関連論文リスト
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
総合的な脳コネクトームの構築は、静止状態fMRI(rs-fMRI)解析において基本的な重要性が証明されている。
我々は脳ネットワークを有向非循環グラフ(DAG)としてモデル化し、脳領域間の直接因果関係を発見する。
本研究では,効率的な接続性を推定し,rs-fMRI時系列を分類するために,時空間DAG畳み込みネットワーク(ST-DAGCN)を提案する。
論文 参考訳(メタデータ) (2023-12-16T04:31:51Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Neural Relational Inference with Efficient Message Passing Mechanisms [10.329082213561785]
本稿では,これらの問題に対処するための構造的事前知識を持つグラフニューラルネットワークに,効率的なメッセージパッシング機構を導入する。
すべての関係の共存を捕捉する関係相互作用機構を提案し、エラーの蓄積を緩和するために履歴情報を用いてアテンポラルメッセージパッシング機構を提案する。
論文 参考訳(メタデータ) (2021-01-23T11:27:31Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。